Bifidobacterium bifidum TMC3115 Promotes Early Life Intestinal Microbiota Building to Alleviate Symptoms of Inflammatory Bowel Disease
-
摘要:目的 探究生命早期使用两歧双歧杆菌(Bifidobacterium bifidum)TMC3115对肠道菌群及免疫功能和远期炎症性肠病的影响。方法 购入14只待产BALB/c孕鼠,获得新生BALB/c小鼠84只,随机分为生理盐水组和TMC3115组,每组约42只,分别采用生理盐水、TMC3115灌胃(每只灌胃量为0.2 mL/d ),至3周时停止灌胃。3周时,各组分别处死一半小鼠,随后将各组剩余小鼠随机分为生理盐水-water组、生理盐水-DSS组、TMC3115-water组、TMC3115-DSS组,每组约10只 。继续普通饲料喂养至6周时,自由饮用3%葡聚糖硫酸钠(dextran sulphate sodium, DSS)4 d建立肠炎模型,非模型组自由饮用纯水。6周零4天时,实验结束。记录小鼠每周体质量变化,分别采集实验结束时的肠道组织,以及3周和实验结束时小鼠的粪便样本、脾脏和血清,测定结肠炎症性病理评分、粪便肠道菌群构成、脾脏脏器指数和血清因子质量浓度。结果 ①实验结束时,与生理盐水-DSS组相比,TMC3115-DSS组的结肠炎症性病理评分降低(P<0.05),结肠隐窝结构等破坏较小,炎性浸润程度较低,上皮结构较完整。②3周时,与生理盐水组相比,TMC3115组粪便中的双歧杆菌属相对丰度升高(P<0.05),肠球菌属和葡萄球菌属的相对丰度均降低(P<0.05),脾脏脏器指数升高(P<0.05),白细胞介素(interleukin, IL)-10下降(P<0.05),而IL-6和肿瘤坏死因子-α(tumor necrosis factor, TNF-α)无明显变化(P>0.05);实验结束时,与生理盐水-DSS组相比,TMC3115-DSS组粪便中的葡萄球菌属、瘤胃球菌属和埃希氏杆菌属/志贺氏菌属相对丰度均降低(P<0.05),脾脏脏器指数升高(P<0.05),但IL-6、IL-10和TNF-α无明显变化(P>0.05)。结论 生命早期使用TMC3115可促进新生小鼠肠道菌群的构建,并产生远期影响,从而缓解小鼠结肠炎,但其机制尚不明确。Abstract:Objective To investigate the effects of using Bifidobacterium bifidum TMC3115 in early life on intestinal microbiota and immune functions and the long-term impact on inflammatory bowel disease.Methods Fourteen pregnant BALB/c mice were purchased and 84 newborn BALB/c mice were subsequently obtained. Then, the newborn mice were randomly assigned to a normal saline (NS) group and a TMC3115 group, given via oral gavage normal saline and TMC3115, respectively, at a daily volume of 0.2 mL for each mouse. About 42 mice were assigned to each group. The gavage was stopped after 3 weeks. At this point, half of the mice in each group were sacrificed, and then the remaining mice in each group were randomly divided into NS-water group, NS-DSS group, TMC3115-water group, and TMC3115-DSS group, with about 10 mice in each group. The mice were given regular feed until the end of week 6 when they were given 3% dextran sulphate sodium (DSS) ad libitum for 4 days to establish the enteritis model, while the non-modeling groups were given pure water ad libitum. The experiment ended after 6 weeks and 4 days. The weekly body mass changes of the mice were documented. The intestinal tissue at the end of the experiment and the fecal samples, spleen and serum of the mice at 3 weeks and at the end of the experiment were collected to determine the pathology scores of colonic inflammation, the composition of fecal gut microbiota, spleen organ index and the mass concentration of serum cytokines.Results 1) At the end of the experiment, the inflammatory pathology score was significantly lower in the TMC3115-DSS group compared with that of the Saline-DSS group (P<0.05), with less disruption of colonic crypt structures and other structures, less inflammatory infiltration, and more intact epithelial structures. 2) At 3 weeks, in comparison with those of the NS group, the relative abundance of Bifidobacterium was significantly higher in the feces of the TMC3115 (P<0.05), the relative abundance of both Enterococcus and Staphylococcus was lower (P<0.05), the splenic organ index was significantly higher (P<0.05), and interleukin (IL)-10 was significantly decreased (P<0.05), while there was no significant change in IL-6 or TNF-α (P>0.05). At the end of the experiment, in comparison with those of the NS-DSS group that undergone DSS induction, the TMC3115-DSS group had reduced relative abundance of Staphylococcus, Staphylococcus tumefaciens and Escherichia/Shigella in the feces (P<0.05), while the splenic organ index was significantly higher (P<0.05), and there were no significant changes in IL-6 or TNF-α (P>0.05).Conclusion The use of TMC3115 in early life promotes the construction of gut microbiota in neonatal mice, thereby producing a long-term effect that alleviates colitis in mice, but the mechanisms involved are still not fully understood.
-
Keywords:
- Early life /
- TMC3115 /
- Gut microbiota /
- Inflammatory bowel disease
-
炎症性肠病(inflammatory bowel disease, IBD)是病因尚不明确的慢性非特异性肠道疾病,病变常累及结肠黏膜,以溃疡和糜烂为主。目前IBD的发病机制尚不十分明确,但可能存在某些关键发病因素,如黏膜屏障功能缺陷、免疫和肠道微生物改变等[1]。近年来,IBD发病率居高不下且主要集中在青中年人群,其中年轻患者更容易发展为慢性IBD[2-6],因此早期预防十分重要。
本课题组前期在过敏性疾病研究中发现,生命早期肠道菌群的变化对小鼠免疫功能等产生远期作用,从而预防疾病[7]。IBD与过敏性疾病类似,发病具有一定的免疫机制,我们推测其也可能受到生命早期肠道菌群构建的影响[8-9]。关于肠道菌群影响IBD发病的机制,可能与肠道屏障、宿主免疫功能等方面关系密切[10-12]。但对于这一假设,目前还缺乏充足证据。
我们在前期研究中发现,生命早期补充两歧双歧杆菌(Bifidobacterium bifidum)TMC3115能够一定程度上影响新生小鼠的免疫功能和肠上皮细胞的发育[13]。双歧杆菌在人体肠道中是重要的组成部分,其最早在婴幼儿肠道内定植并成为优势菌,在缓解炎症症状中发挥着重要作用[14-16]。故双歧杆菌可能是IBD防治的重要菌株。本研究拟探讨生命早期补充TMC3115是否能够促进新生小鼠肠道菌群的构建,以及良好的早期肠道菌群结构能否在远期产生持续作用,减轻小鼠炎症症状。
1. 资料与方法
1.1 实验动物与试剂
BALB/c孕鼠购于辽宁长生生物技术股份有限公司〔动物许可证号:SCXK(辽)2020-0001 〕,于四川大学华西公共卫生学院动物中心饲养〔实验室许可证号:SYXK(川)2018-011 〕, 其环境相对湿度为40%~60%,室温为(22±1) ℃,12 h昼夜循环,自由普通饮食饮水。饲养条件为无特定病原体(specific pathogen free, SPF)级别。
益生菌为两歧双歧杆菌TMC3115,每克菌粉含1.25×1011活菌(计数单位为CFU,每只接受TMC3115干预的小鼠给予绝对含菌量109 CFU/d,灌胃量为0.2 mL/d),由一然生物科技有限公司提供。葡聚糖硫酸钠(dextran sulphate sodium, DSS,相对分子质量30×103~50×103,给药量为3 g DSS/100 mL纯水即3%DSS)购自安诺伦(北京)生物科技有限公司。
1.2 动物实验分组及干预
14只BALB/c孕鼠自然生产,获得新生BALB/c小鼠84只,性别按出生自然分布。小鼠自出生起,随机分为生理盐水组(NS group)和TMC3115组(TMC3115 group),共2组,每组约42只。实验第3周时,各组分别处死一半小鼠,随后将各组剩余小鼠按实验干预操作随机分为生理盐水-water组(NS-water组)、生理盐水-DSS组(NS-DSS组)、TMC3115-water组、TMC3115-DSS组,共4组,每组约10只(图1),其中模型组小鼠自由饮用3%DSS 4 d建立溃疡性结肠炎模型,非模型组小鼠自由饮用纯水。实验中记录小鼠每周体质量变化,采集实验第3周和第6周零4天(实验结束)时小鼠的粪便样本、血清和脾脏以及实验结束时收集小鼠肠道组织,计算脾脏脏器指数即脾脏相对质量〔脾脏质量(mg) /小鼠体质量(g) 〕。为了降低组内小鼠个体差异对实验结果的影响,同时考虑到收集的样品量有限,故将同一处理组内样品进行混样处理。在本研究中,实验结束时各组随机选取6只小鼠结肠组织进行炎症性病理评分,并在实验第3周和实验结束时进行粪便混样(得到混样5个/组)测定肠道菌群组成,血清混样(得到混样6个/组)测定血清炎症因子。
1.3 结肠组织病理切片及炎症情况评价方法
实验结束时收集小鼠结肠组织样品。先10%中性甲醛溶液浸泡、固定2 d,再换60%~70%酒精浸泡,后进行组织脱水和石蜡包埋,根据肠道形态纵向切片,最后进行HE染色。请病理科医生按照病理评分标准对组织进行评分。具体评分标准细则如下,分别进行炎症损伤程度〔0分(无损伤);1分(轻度);2分(中度);3分(重度) 〕、炎症损伤深度〔0分(无损伤);1分(黏膜层);2分(黏膜下层);3分(全层) 〕、炎症破坏的黏膜面积范围〔1分(0~25%);2分(26%~50%);3分(51%~75%);4分(76%~100%) 〕、隐窝损伤程度〔0分(无损伤);1分(基底层的1/3);2分(基底层的2/3);3分(仅肠道表面上皮完整);4分(肠道上皮和基底层均被破坏) 〕、隐窝破坏的黏膜面积范围〔1分(0~25%);2分(26%~50%);3分(51%~75%);4分(76%~100%) 〕的评分。各单项评分相加即为最终病理评分,评分范围为1~18分[17-19]。生理盐水-DSS组与生理盐水-water组相比,病理评分升高且差异有统计学意义(P<0.05),即为DSS诱导的结肠炎症模型造模成功。
1.4 粪便微生物测序分析
采集实验第3周和实验结束时小鼠的粪便样本。粪便基因组DNA按照TIANamp Stool DNA Kit(货号:DP328)说明书提取。选择细菌16S rRNA V3-V4区通用引物(341F 5′-CCTAYGGGRBGCASCAG-3′和806R 5′-GGACTACNNGGGTATCTAAT-3′)对粪便基因组 DNA进行PCR扩增。按照TruSeq®DNA PCR-Free样品制备试剂盒(美国 Illumina)的使用说明生成样品DNA测序文库,该文库在Illumina NovaSeq平台上测序。测序信息再处理后,分别进行Alpha多样性分析(包括计算Chao、ACE、Shannon和Simpson等指数)和Beta多样性分析(包括Bray-Curtis和PCoA等分析)。
1.5 Luminex检测血清细胞因子水平
3周和实验结束时通过眼球取血收集小鼠血液,静置2 h后,离心(2 000 ×g,15~20 min)后得血清样品。血清细胞因子肿瘤坏死因子-α(tumor necrosis factor-α, TNF-α)、白细胞介素(interleukin, IL)-6、IL-10水平的测定参照多因子检测试剂盒(Luminex,货号:LXSAMSM-06)的说明书步骤,样品在液相芯片检测系统Luminex200中检测,其中各样品的血清质量浓度未进行稀释化处理。
1.6 统计学方法
符合正态分布的计量资料以
$ \bar{x} $ ±s表示。数据服从正态分布且方差齐,两组间比较采用t检验,多组间比较采用单因素方差分析(ANOVA)。数据不服从正态分布或方差不齐,采用t’检验或非参数检验。P<0.05为差异有统计学意义。2. 结果
2.1 实验动物一般情况
DSS诱导后,实验小鼠出现大便湿润或不成形、肉眼血便等,精神不振,但体质量未有明显下降。整个实验过程,未出现实验小鼠死亡。
2.2 实验结束时各组小鼠结肠炎炎症情况
实验结束处死小鼠后,对小鼠的结肠组织进行HE染色及炎症性病理评分(图2)。NS-DSS组与NS-water组相比及TMC3115-DSS组与TMC3115-water组相比,两模型组肠道组织的HE染色切片均显示结肠腺体形态异常,结构破坏较严重;与NS-DSS组相比,TMC3115-DSS组的结肠隐窝结构等破坏较小,炎性浸润程度较低,上皮结构较完整。DSS诱导后,NS-DSS组的炎症性病理评分高于NS-water组(P<0.05),TMC3115-DSS组的炎症性病理评分高于TMC3115-water组(P<0.05);TMC3115-DSS组的炎症性病理评分较NS-DSS组降低(P<0.05)。
图 2 实验结束时各组小鼠结肠组织的HE染色图像及炎症性病理评分情况Figure 2. HE staining images and the inflammatory pathology scores of the colon tissues of the mice in the different groups at the end of the experimentA: In the NS-water group, the colonic mucosa had normal morphology and regular structure; B: In the NS-DSS group, the crypt structure was significantly damaged, the glands was atrophied, and the epithelial morphology was abnormal and showed inflammatory infiltration; C: In the TMC3115-water group, the crypts were structurally intact, the glands developed normally, and the structure was regular; D: In the TMC3115-DSS group, different degrees of inflammatory reactions were seen, but crypt destruction and inflammatory infiltration were less severe than those in the normal saline group; E: Inflammatory pathology score at the end of the experiment (n=6). The arrows showed the typical pathological changes after the intervention. ** P<0.01, *** P<0.001.2.3 早期使用TMC3115对肠道菌群的即时影响和远期影响
肠道菌群组成数据显示(表1),3周时,在门水平上,生理盐水组与TMC3115组中拟杆菌门/厚壁菌门(Bacteroidetes/Firmicutes, B/F)相对丰度的差异无统计学意义,但TMC3115组中的放线菌门(Actinobacteria)相对丰度高于生理盐水组,差异有统计学意义(P<0.001);在属水平上,与生理盐水组相比,TMC3115组中的双歧杆菌属(Bifidobacterium)相对丰度升高(P<0.001),乳杆菌属(Lactobacillus)相对丰度呈现升高趋势,但差异无统计学意义,肠球菌属(Enterococcus)和葡萄球菌属(Staphylococcus)的相对丰度均降低(P<0.05)。实验结束时(表2),在门水平上,NS-DSS组和TMC3115-DSS组相比,B/F的相对丰度差异无统计学意义,但TMC3115-DSS组中变形菌门(Proteobacteria)相对丰度降低,差异有统计学意义(P<0.05);在属水平上,与NS-DSS组相比,TMC3115-DSS组的乳杆菌属相对丰度升高(P<0.01),但葡萄球菌属、瘤胃球菌属(Ruminococcus)和埃希氏杆菌属/志贺氏菌属(Escherichia/Shigella)相对丰度均降低(P<0.05)。肠道菌群Alpha多样性数据显示(图3),3周时,与生理盐水组相比,TMC3115组的Shannon指数和Simpson指数均下降,差异有统计学意义(P<0.05);同样,实验结束时,TMC3115-DSS组的Shannon指数和Simpson指数也低于NS-DSS组(P<0.05)。肠道菌群Beta多样性数据显示(图4),3周时,生理盐水组与TMC3115组的微生物群落在相同象限重叠,但实验结束时各组的微生物群落彼此相互分开,处于不同象限,提示此时各组菌落结构各不相同。
表 1 3周时小鼠肠道菌群门水平和属水平的物种平均相对丰度($\bar x \pm s$ )Table 1. Relative abundance of gut microbiota at phylum and genus levels at 3 weeks ($ \bar x \pm s $ )Phylum/Genus NS group (n=5) TMC3115 group (n=5) Phylum Firmicutes/% 50.50±2.62 49.02±7.68 Actinobacteria/% 2.61±0.45 11.76±3.34*** Proteobacteria/% 3.44±0.84 1.12±0.09 Bacteroidetes/% 42.93±2.53 37.25±6.11 (Bacteroidetes
/Firmicutes)/%0.87±0.09 0.93±0.27 Genus Lactobacillus/% 29.19±2.14 40.97±9.25 Bifidobacterium/% 1.79±3.34 17.45±5.99*** Staphylococcus/% 3.64±0.68 2.32±0.28* Enterococcus/% 9.95±3.62 4.12±0.54* Ruminococcus/% 0.36±0.07 0.25±0.05 (Escherichia/Shigella)/% 2.25±1.45 0.20±0.08 * P<0.05, *** P<0.001, vs. NS group. 表 2 实验结束时小鼠肠道菌群门水平和属水平的物种平均相对丰度($ \bar x \pm s $ )Table 2. Relative abundance of gut microbiota at phylum and genus levels at the end of the experiment ($ \bar x \pm s $ )Phylum/Genus NS-water group (n=5) NS-DSS group (n=5) TMC3115-water group (n=5) TMC3115-DSS group (n=5) Phylum Firmicutes/% 29.46±1.62 35.91±3.55 47.77±3.56 47.44±4.99 Actinobacteria/% 1.31±0.39 0.93±0.24 0.52±0.08 0.33±0.05 Proteobacteria/% 6.75±2.41 18.14±8.61 4.31±1.09 4.31±0.42# Bacteroidetes/% 61.12±4.43 44.15±6.51 45.63±2.61 47.52±5.19 (Bacteroidetes/Firmicutes)/% 2.13±0.26 1.24±0.14 0.99±0.13 1.10±0.24 Genus Lactobacillus/% 7.11±1.11 6.81±2.25 34.92±8.89 35.69±5.04## Bifidobacterium/% 0.02±0.01 0.03±0.01 0.002±0.002 0.24±0.11 Staphylococcus/% 2.09±0.58 1.49±0.19 0.29±0.09 0.04±0.01# Enterococcus/% 0.01±0.003 0.02±0.02 0.004±0.002 0.06±0.03 Ruminococcus/% 0.65±0.09 0.44±0.07 0.09±0.03 0.003±0.001### (Escherichia/
Shigella)/%0.72±0.68 13.50±8.43 0.35±0.33 0.83±0.25# # P<0.05, ## P<0.01, ### P<0.001, vs. NS-DSS group. 2.4 早期使用TMC3115对小鼠全身免疫功能的影响
脾脏脏器指数的数据显示(图5),实验第3周时,TMC3115组的脾脏脏器指数高于生理盐水组,差异有统计学意义(P<0.001);实验结束时,NS-DSS组的脾脏脏器指数与NS-water组之间的差异无统计学意义,但TMC3115-DSS组的脾脏脏器指数高于NS-DSS组(P<0.05)。血清细胞因子的数据显示(图6),实验第3周时,TMC3115组的IL-10水平低于生理盐水组,差异有统计学意义(P<0.05),而TNF-α和IL-6水平在两组间的差异无统计学意义;实验结束时,TMC3115-DSS组的IL-6水平高于NS-water组和TMC3115-water组(P<0.01),TNF-α和IL-10水平在各组间的差异均无统计学意义。
3. 讨论
近年来,较多研究开始关注生命早期,并逐渐发现其是多种疾病预防的关键窗口期,同时也有越来越多的研究将一些远期疾病(IBD、肥胖以及哮喘等)与生命早期的某些因素联系起来[20-21]。IBD是一种与遗传学、环境以及微生物相关的复杂疾病,免疫功能和肠道微生物群的变化可能在IBD预防和控制中起着关键作用[22]。因此,本研究旨在探索生命早期这一特殊窗口期内使用TMC3115是否对肠道菌群构建和免疫功能产生有益的近期影响,停用益生菌后,早期益生作用所产生的持续效应是否缓解远期结肠炎症状,探索益生菌预防结肠炎的可能性。
在本研究结束时,NS-water组和TMC3115-water组的病理评分和HE染色切片结果均明显优于NS-DSS组TMC3115-DSS组,提示两模型组均造模成功,小鼠结肠组织内出现炎症症状,与IBD患者的结肠炎症状相似[23]。在模型组中,早期使用过TMC3115的干预组在结肠炎发生时,其炎症性病理评分和HE染色切片结果均优于非干预组,同时炎性细胞对黏膜及黏膜下层的浸润亦明显减轻,能在一定程度上保护腺体和隐窝的结构。以上结果表明,生命早期使用TMC3115可能产生的益生作用在停用菌后直至实验结束时仍然存在,能在一定限度内保护远期小鼠的肠道黏膜结构,有效减轻结肠炎的病理性炎症症状。
较多研究发现菌群失衡是IBD发病的关键因素之一[1, 24],与健康人群的肠道菌群相比,IBD患者中的乳杆菌属、双歧杆菌属等有益菌含量下降,肠球菌属、葡萄球菌属等有害菌含量升高,菌群紊乱促进了炎症的发生和发展[25-28]。GEREMIA等[29]研究发现,双歧杆菌可以通过肠道微生物群正常化(如上调有益菌、下降有害菌)减缓溃疡性结肠炎的恶化。在本研究中,实验第3周时,TMC3115组与生理盐水组相比,有益菌(如双歧杆菌属、乳杆菌属)相对丰度升高,有害菌(如肠球菌属和葡萄球菌属)相对丰度降低。停止干预一段时间,DSS诱导发生结肠炎后(实验结束时),与NS-DSS组相比,TMC3115-DSS组仍然有较高丰度的有益菌(如乳杆菌属)和较低丰度的有害菌(如葡萄球菌属)。除此之外,结肠炎发生时,早期使用过TMC3115的小鼠具有较低丰度的瘤胃球菌属以及埃希氏杆菌属/志贺氏菌属。研究发现,瘤胃球菌和黏附-侵袭性埃希氏杆菌属与IBD和肠道炎症发生密切相关[24-25, 30]。肠道菌群多样性的数据显示,在实验第3周和实验结束时,TMC3115的干预组小鼠肠道菌群的Shannon指数和Simpson指数均低于非干预组小鼠。Shannon指数和Simpson指数是代表菌群多样性中均匀度的指标,提示TMC3115可能相对增加新生小鼠和远期小鼠肠道内非优势菌(如双歧杆菌),造成菌群均匀度下降,这与肠道菌群组成数据结果相似。综上,早期使用TMC3115能一定程度上促进新生小鼠肠道菌群的构建,使有益菌相对丰度升高,有害菌相对丰度下降。停用TMC3115后,早期构建的良好菌群结构也可持续影响至远期。当结肠炎发生时,肠道菌群仍然维持有益菌相对较多,有害菌相对较少,且炎症相关菌群较少的状态。因此,促进早期肠道菌群构建在停止益生菌干预后的远期时仍具有一定的肠道抗炎作用。
在IBD的发病过程中,宿主肠道菌群紊乱所引起的免疫功能障碍参与了整个过程[31],包括免疫相关细胞因子的异常分泌[29]。故调节炎症发生时的免疫功能可能是预防和治疗结肠炎的方法之一。脾脏是人体最大的免疫器官,脾脏脏器指数可以反映人体免疫功能的动态变化[32-33]。且药物对脾脏脏器指数的影响可以作为研究动物免疫药理机制的初步指标[34]。在本研究中,实验第3周和实验结束时,使用过TMC3115的干预组小鼠的脾脏脏器指数高于非干预组。但在血清细胞因子水平方面,实验第3周时干预组除了IL-10下降外,TNF-α和IL-6均无明显变化。研究[35-37]发现,双歧杆菌属的免疫调节会刺激辅助型T细胞1(Thelper1 cell, Th1)的免疫反应,抑制辅助型T细胞2(Thelper2 cell, Th2)的免疫反应,进而降低IL-10水平,这与本研究结果的趋势相同。Th2是lgE介导过敏反应的关键因素[38],而微生物可通过改善Th1/Th2的平衡缓解过敏疾病症状[39-40]。当实验结束时,NS-water与NS-DSS两组间和NS-DSS与TMC3115-DSS两组间的TNF-α、IL-10、IL-6均无显著变化。以上结果表明,在生命早期使用TMC3115可能会影响机体对抗病原体的免疫能力,但血清细胞因子无显著变化,所以这种影响对于全身机体组织来说可能是适度的和有限的,故早期使用益生菌可能不会对机体造成过度免疫的风险。另一方面,DSS诱导结肠炎时血清细胞因子无明显变化,推测是结肠炎炎症仅局限于小鼠结肠部位,未引起全身免疫水平的变化。可在后续实验中测定结肠组织相关细胞因子的mRNA表达量,探究炎症发生时小鼠结肠内免疫因子水平的变化。
综上,生命早期使用TMC3115能够在一定程度上缓解停用菌后的远期结肠炎炎症症状,这可能与TMC3115改变早期肠道菌群构建并持续作用有关。在本研究中,我们对肠道菌群及免疫功能变化和远期炎症之间的关系进行初步分析,但其机制尚不明确,仍需要进一步探索。
* * *
利益冲突 所有作者均声明不存在利益冲突
-
图 2 实验结束时各组小鼠结肠组织的HE染色图像及炎症性病理评分情况
Figure 2. HE staining images and the inflammatory pathology scores of the colon tissues of the mice in the different groups at the end of the experiment
A: In the NS-water group, the colonic mucosa had normal morphology and regular structure; B: In the NS-DSS group, the crypt structure was significantly damaged, the glands was atrophied, and the epithelial morphology was abnormal and showed inflammatory infiltration; C: In the TMC3115-water group, the crypts were structurally intact, the glands developed normally, and the structure was regular; D: In the TMC3115-DSS group, different degrees of inflammatory reactions were seen, but crypt destruction and inflammatory infiltration were less severe than those in the normal saline group; E: Inflammatory pathology score at the end of the experiment (n=6). The arrows showed the typical pathological changes after the intervention. ** P<0.01, *** P<0.001.
表 1 3周时小鼠肠道菌群门水平和属水平的物种平均相对丰度(
$\bar x \pm s$ )Table 1 Relative abundance of gut microbiota at phylum and genus levels at 3 weeks (
$ \bar x \pm s $ )Phylum/Genus NS group (n=5) TMC3115 group (n=5) Phylum Firmicutes/% 50.50±2.62 49.02±7.68 Actinobacteria/% 2.61±0.45 11.76±3.34*** Proteobacteria/% 3.44±0.84 1.12±0.09 Bacteroidetes/% 42.93±2.53 37.25±6.11 (Bacteroidetes
/Firmicutes)/%0.87±0.09 0.93±0.27 Genus Lactobacillus/% 29.19±2.14 40.97±9.25 Bifidobacterium/% 1.79±3.34 17.45±5.99*** Staphylococcus/% 3.64±0.68 2.32±0.28* Enterococcus/% 9.95±3.62 4.12±0.54* Ruminococcus/% 0.36±0.07 0.25±0.05 (Escherichia/Shigella)/% 2.25±1.45 0.20±0.08 * P<0.05, *** P<0.001, vs. NS group. 表 2 实验结束时小鼠肠道菌群门水平和属水平的物种平均相对丰度(
$ \bar x \pm s $ )Table 2 Relative abundance of gut microbiota at phylum and genus levels at the end of the experiment (
$ \bar x \pm s $ )Phylum/Genus NS-water group (n=5) NS-DSS group (n=5) TMC3115-water group (n=5) TMC3115-DSS group (n=5) Phylum Firmicutes/% 29.46±1.62 35.91±3.55 47.77±3.56 47.44±4.99 Actinobacteria/% 1.31±0.39 0.93±0.24 0.52±0.08 0.33±0.05 Proteobacteria/% 6.75±2.41 18.14±8.61 4.31±1.09 4.31±0.42# Bacteroidetes/% 61.12±4.43 44.15±6.51 45.63±2.61 47.52±5.19 (Bacteroidetes/Firmicutes)/% 2.13±0.26 1.24±0.14 0.99±0.13 1.10±0.24 Genus Lactobacillus/% 7.11±1.11 6.81±2.25 34.92±8.89 35.69±5.04## Bifidobacterium/% 0.02±0.01 0.03±0.01 0.002±0.002 0.24±0.11 Staphylococcus/% 2.09±0.58 1.49±0.19 0.29±0.09 0.04±0.01# Enterococcus/% 0.01±0.003 0.02±0.02 0.004±0.002 0.06±0.03 Ruminococcus/% 0.65±0.09 0.44±0.07 0.09±0.03 0.003±0.001### (Escherichia/
Shigella)/%0.72±0.68 13.50±8.43 0.35±0.33 0.83±0.25# # P<0.05, ## P<0.01, ### P<0.001, vs. NS-DSS group. -
[1] FAN L, QI Y, QU S, et al. B.adolescentis ameliorates chronic colitis by regulating Treg/Th2 response and gut microbiota remodeling. Gut Microbes,2021,13(1): 1–17. DOI: 10.1080/19490976.2020.1826746
[2] NG S C. Epidemiology of inflammatory bowel disease: Focus on Asia. Best Pract Res Clin Gastroenterol,2014,28(3): 363–372. DOI: 10.1016/j.bpg.2014.04.003
[3] YANG H, LI Y, WU W, et al. The incidence of inflammatory bowel disease in Northern China: A prospective population-based study. PLoS One, 2014, 9(7): e101296[2021-11-05]. https://doi.org/10.1371/journal.pone.0101296.
[4] BENCHIMOL E I, FORTINSKY K J, GOZDYRA P, et al. Epidemiology of pediatric inflammatory bowel disease: A systematic review of international trends. Inflamm Bowel Dis,2011,17(1): 423–439. DOI: 10.1002/ibd.21349
[5] ROSEN M J, DHAWAN A, SAEED S A. Inflammatory bowel disease in children and adolescents. JAMA Pediatr,2015,169(11): 1053–1060. DOI: 10.1001/jamapediatrics.2015.1982
[6] KELSEN J, BALDASSANO R N. Inflammatory bowel disease: The difference between children and adults. Inflamm Bowel Dis,2008,14(Suppl 2): S9–S11. DOI: 10.1002/ibd.20560
[7] SHEN X, WANG M, ZHANG X, et al. Dynamic construction of gut microbiota may influence allergic diseases of infants in Southwest China. BMC Microbiol,2019,19(1): 123. DOI: 10.1186/s12866-019-1489-4
[8] NG S C, TANG W, LEONG R W, et al. Environmental risk factors in inflammatory bowel disease: A population-based case-control study in Asia-Pacific. Gut,2015,64(7): 1063–1071. DOI: 10.1136/gutjnl-2014-307410
[9] TIMM S, SVANES C, JANSON C, et al. Place of upbringing in early childhood as related to inflammatory bowel diseases in adulthood: A population-based cohort study in Northern Europe. Eur J Epidemiol,2014,29(6): 429–437. DOI: 10.1007/s10654-014-9922-3
[10] KAYAMA H, OKUMURA R, TAKEDA K. Interaction between the microbiota, epithelia, and immune cells in the intestine. Annu Rev Immunol,2020,38: 23–48. DOI: 10.1146/annurev-immunol-070119-115104
[11] FIOCCHI C. Genes and 'in-vironment': How will our concepts on the pathophysiology of inflammatory bowel disease develop in the future? Dig Dis,2012,30(Suppl 3): 2–11. DOI: 10.1159/000342585
[12] FRANKE A, MCGOVERN D P, BARRETT J C, et al. Genome-wide meta-analysis increases to 71 the number of confirmed Crohn's disease susceptibility loci. Nat Genet,2010,42(12): 1118–1125. DOI: 10.1038/ng.717
[13] CHENG R, GUO J, PU F, et al. Loading ceftriaxone, vancomycin, and Bifidobacteria bifidum TMC3115 to neonatal mice could differently and consequently affect intestinal microbiota and immunity in adulthood. Sci Rep,2019,9(1): 3254. DOI: 10.1038/s41598-018-35737-1
[14] KHAN I, ULLAH N, ZHA L, et al. Alteration of gut microbiota in inflammatory Bowel disease (IBD): Cause or consequence? IBD Treatment Targeting the Gut Microbiome. Pathogens,2019,8(3): 126. DOI: 10.3390/pathogens8030126
[15] HEUVELIN E, LEBRETON C, GRANGETTE C, et al. Mechanisms involved in alleviation of intestinal inflammation by bifidobacterium breve soluble factors. PLoS One, 2009, 4(4): e5184[2021-11-05]. https://doi.org/10.1371/journal.pone.0005184.
[16] SEPEHRI S, KOTLOWSKI R, BERNSTEIN C N, et al. Microbial diversity of inflamed and noninflamed gut biopsy tissues in inflammatory bowel disease. Inflamm Bowel Dis,2007,13(6): 675–683. DOI: 10.1002/ibd.20101
[17] LU N, WANG L, CAO H, et al. Activation of the epidermal growth factor receptor in macrophages regulates cytokine production and experimental colitis. J Immunol,2014,192(3): 1013–1023. DOI: 10.4049/jimmunol.1300133
[18] YODA K, MIYAZAWA K, HOSODA M, et al. Lactobacillus GG-fermented milk prevents DSS-induced colitis and regulates intestinal epithelial homeostasis through activation of epidermal growth factor receptor. Eur J Nutr,2014,53(1): 105–115. DOI: 10.1007/s00394-013-0506-x
[19] LI R, ZHANG Y, POLK D B, et al. Preserving viability of Lactobacillus rhamnosus GG in vitro and in vivo by a new encapsulation system. J Control Release,2016,230: 79–87. DOI: 10.1016/j.jconrel.2016.04.009
[20] ARRIETA M C, STIEMSMA L T, AMENYOGBE N, et al. The intestinal microbiome in early life: Health and disease. Front Immunol, 2014, 5: 427[2021-11-05]. https://doi.org/10.3389/fimmu.2014.00427.
[21] JAGODZINSKI A, ZIELINSKA E, LACZMANSKI L, et al. The early years of life. Are they influenced by our microbiome? Ginekol Pol,2019,90(4): 228–232. DOI: 10.5603/GP.2019.0041
[22] ANANTHAKRISHNAN A N. Epidemiology and risk factors for IBD. Nat Rev Gastroenterol Hepatol,2015,12(4): 205–217. DOI: 10.1038/nrgastro.2015.34
[23] 古丽那尔·阿布拉江, 桑伟, 师晓莉, 等. 炎症性肠病的临床病理学特点. 世界华人消化杂志,2014,22(7): 1027–1032. [24] KONG C, YAN X, LIU Y, et al. Ketogenic diet alleviates colitis by reduction of colonic group 3 innate lymphoid cells through altering gut microbiome. Signal Transduct Target Ther,2021,6(1): 154. DOI: 10.1038/s41392-021-00549-9
[25] CHEN D, CHEN G, CHEN C, et al. Prebiotics effects in vitro of polysaccharides from tea flowers on gut microbiota of healthy persons and patients with inflammatory bowel disease. Int J Biol Macromol,2020,158: 968–976. DOI: 10.1016/j.ijbiomac.2020.04.248
[26] PITTAYANON R, LAU J T, LEONTIADIS G I, et al. Differences in gut microbiota in patients with vs without inflammatory Bowel diseases: A systematic review. Gastroenterology,2020,158(4): 930–946.e1. DOI: 10.1053/j.gastro.2019.11.294
[27] MANICHANH C, RIGOTTIER-GOIS L, BONNAUD E, et al. Reduced diversity of faecal microbiota in Crohn's disease revealed by a metagenomic approach. Gut,2006,55(2): 205–211. DOI: 10.1136/gut.2005.073817
[28] SHEN Z H, ZHU C X, QUAN Y S, et al. Relationship between intestinal microbiota and ulcerative colitis: Mechanisms and clinical application of probiotics and fecal microbiota transplantation. World J Gastroenterol,2018,24(1): 5–14. DOI: 10.3748/wjg.v24.i1.5
[29] GEREMIA A, BIANCHERI P, ALLAN P, et al. Innate and adaptive immunity in inflammatory bowel disease. Autoimmun Rev,2014,13(1): 3–10. DOI: 10.1016/j.autrev.2013.06.004
[30] SCHIRMER M, GARNER A, VLAMAKIS H, et al. Microbial genes and pathways in inflammatory bowel disease. Nat Rev Microbiol,2019,17(8): 497–511. DOI: 10.1038/s41579-019-0213-6
[31] THAISS C A, ZMORA N, LEVY M, et al. The microbiome and innate immunity. Nature,2016,535(7610): 65–74. DOI: 10.1038/nature18847
[32] HOU Y J, ZHAO Y Y, XIONG B, et al. Mycotoxin-containing diet causes oxidative stress in the mouse. PLoS One, 2013, 8(3): e60374[2021-11-05]. https://doi.org/10.1371/journal.pone.0060374.
[33] WANG S, CHEN C, YANG Z, et al. Targeted disruption of influenza A virus hemagglutinin in genetically modified mice reduces viral replication and improves disease outcome. Sci Rep, 2016, 6: 23746[2021-11-05]. https://doi.org/10.1038/srep23746.
[34] JIANG S, QIU L, LI Y, et al. Effects of Marsdenia tenacissima polysaccharide on the immune regulation and tumor growth in H22 tumor-bearing mice. Carbohydr Polym,2016,137: 52–58. DOI: 10.1016/j.carbpol.2015.10.056
[35] TAKAHASHI N, KITAZAWA H, IWABUCHI N, et al. Oral administration of an immunostimulatory DNA sequence from Bifidobacterium longum improves Th1/Th2 balance in a murine model. Biosci Biotechnol Biochem,2006,70(8): 2013–2017. DOI: 10.1271/bbb.60260
[36] HIDALGO-CANTABRANA C, DELGADO S, RUIZ L, et al. Bifidobacteria and their health-promoting effects. Microbiol Spectr, 2017, 5(3)[2021-11-05]. https://doi.org/10.1128/microbiolspec.BAD-0010-2016.
[37] HE F, MORITA H, OUWEHAND A C, et al. Stimulation of the secretion of pro-inflammatory cytokines by Bifidobacterium strains. Microbiol Immunol,2002,46(11): 781–785. DOI: 10.1111/j.1348-0421.2002.tb02765.x
[38] BOSNJAK B, STELZMUELLER B, ERB K J, et al. Treatment of allergic asthma: Modulation of Th2 cells and their responses. Respir Res,2011,12(1): 114. DOI: 10.1186/1465-9921-12-114
[39] PASCAL M, PEREZ-GORDO M, CABALLERO T, et al. Microbiome and allergic diseases. Front Immunol, 2018, 9: 1584[2021-11-05]. https://doi.org/10.3389/fimmu.2018.01584.
[40] HOUGEE S, VRIESEMA A J, WIJERING S C, et al. Oral treatment with probiotics reduces allergic symptoms in ovalbumin-sensitized mice: A bacterial strain comparative study. Int Arch Allergy Immunol,2010,151(2): 107–117. DOI: 10.1159/000236000
-
期刊类型引用(4)
1. 贾雯,刘美汛,周志谟,李金星,吴思谋,沈曦,何方,程如越. 生命早期肠道菌群与婴儿神经发育的关系初探. 卫生研究. 2024(02): 250-256 . 百度学术
2. 熊慧琳,何涛宏,贺平. 不同疾病活动度炎症性肠病患者血清microRNA-146a-5p、microRNA-145水平的变化及与免疫调节的相关性. 中国现代医学杂志. 2024(10): 72-77 . 百度学术
3. 菲尔顿·吐尔洪,张为民,伊力哈木江·克尤木,张明明,王莽原. 高脂血症患者血浆氧化三甲胺与血脂水平的相关性研究. 四川大学学报(医学版). 2023(05): 1030-1034 . 百度学术
4. 张家瑜,刘梦文,曹芳,祖丽皮耶·艾散,田秀霞,王倩. 基于CiteSpace可视化分析生命早期肠道菌群领域研究现状和发展趋势. 中国微生态学杂志. 2023(12): 1379-1387+1393 . 百度学术
其他类型引用(1)