The Anti-virus Effect of AY358935 Gene on Vesicular Stomatitis Virus and the Mechanism Study
-
摘要:目的 初步探讨本课题组前期克隆的AY358935基因对水疱口炎病毒(vesicular stomatitis virus,VSV)的作用及机制。方法 将构建完整的pcDNA3.1-AY358935质粒及pcDNA3.1空载体分别稳定转染HEK293细胞,并以VSV感染已转染上述基因或空白的HEK293细胞,感染复数(multiplicity of infection,MOI)为0.001。蚀斑分析法检测以上3组细胞上清液中不同时间点的病毒滴度,感染VSV 24 h后用台盼蓝排斥试验检测各组细胞死亡率;对稳定转染目的基因的细胞提取总RNA,进行全基因组cDNA芯片分析。结果 ① 病毒滴度:感染VSV 12 h后,pcDNA3.1-AY358935组细胞上清病毒滴度较pcDNA3.1组和空白组低。18 h时3组病毒滴度分别为(7.16±2.33)×105 PFU/mL、(6.25±2.05)×106 PFU/mL、(7.75±2.54)×106 PFU/mL,pcDNA3.1-AY358935组细胞上清病毒滴度与其余两组的差异接近10倍(P < 0.01);②细胞死亡率:病毒感染24 h后,pcDNA3.1-AY358935组、pcDNA3.1组和空白组的细胞死亡率分别为(35.00±6.68)%、(78.33±15.03)%和(83.34±14.98)%,pcDNA3.1-AY358935组的细胞死亡率较其余两组降低(P < 0.01);③基因芯片分析结果:与pcDNA3.1空载体组比较,稳定转染pcDNA3.1-AY358935的细胞有30个基因表达上调在3倍以上,其中,干扰素激活基因、干扰素效应基因、细胞因子与趋化因子所占比例分别为27%、17%、20%。结论 AY358935基因具有抗VSV作用,其机制可能涉及干扰素相关的天然免疫应答。
-
关键词:
- AY358935基因 /
- VSV /
- 干扰素
Abstract:Objective To explore the anti-virus effect of AY358935 gene cloned by our research team on vesicular stomatitis virus (VSV), and studytheanti-virus mechanism.Methods HEK293 cells were stably transfected by the AY358935 gene recombinant plasmid pcDNA3.1-AY358935 or pcDNA3.1 blank plasmid respectively. Then VSV was added into the cell wells to infect the above cells at the multiplicity of infection (MOI) of 0.001. The virus titers in the liquid supernatant of the above three groups of cells were detected on different time, and the mortality of cells of each group was tested with trypan blue exclusion test at 24 h post VSV infection. Total RNA was extracted from the cells that stably transfected with target gene for the whole genome-wide cDNA microarray analysis.Results ① Virus titer:The virus titer in the liquid supernatant of pcDNA-3.1-AY358935 transfection cells group was obviously lower than those in pcDNA-3.1 transfection cell group and blank control cell group at 12 h post infection. The virus titerin the liquid supernatant of three groups were (7.16±2.33)×105 PFU/mL, (6.25±2.05)×106 PFU/mL and (7.75±2.54)×106 PFU/mL respectively at 18 h post infection. At that time, the virus titerin the liquid supernatant of pcDNA3.1-AY358935 group was nearly 10 times lower than those of other two groups (P < 0.01). ②Mortality of cells:The cell mortality of pcDNA3.1-AY358935 group, pcDNA3.1 group and blank group were (35.00±6.68)%, (78.33±15.03)% and (83.34±14.98)% respectively at 24 h post infection.The cell mortality of pcDNA3.1-AY358935 group was significantly decreased comparing with other two groups (P < 0.01). ③Result of genes chip analysis: compared with pcDNA3.1 group, 30 cell genes were up-regulated by more than 3 times in pcDNA3.1-AY358935 group. Among them, the proportion of interferon-activating gene, interferon-effect gene, cytokine and chemokine was 27%, 17%, and 20%, respectively.Conclusion AY358935 gene hasan anti-VSV effect, and its anti-virus mechanism may involve the interferon-associated natural immune response.-
Keywords:
- AY358935 gene /
- VSV /
- Interferon
-
病毒性疾病是人类面临的重大威胁,我们前期研究[1]筛选出一种功能尚未确知的AY358935基因(简称AY基因,GenBank编号:AY358935.1),表达相对分子质量为10.1×103的分泌蛋白,经生物信息学分析发现其功能可能与抗病毒相关。在本研究中,我们将进一步证实AY358935基因具体的抗病毒作用,并通过全基因组芯片分析了解其作用机制。现报告如下。
1. 材料与方法
1.1 材料
HEK293细胞:源自美国ATCC;水疱口炎病毒(VSV):由四川大学华西医院生物治疗国家重点实验室文艳君老师提供;G418抗生素:美国Gibco公司;结晶紫:上海超研生物科技有限公司;台盼蓝:北京博奥森生物技术有限公司;DMEM培养基:原粉购自美国Gibco BRL公司,胎牛血清(FBS)和胰酶(Tyrisin)购自美国Gibco公司,按说明调配成液化培养基;羧甲基纤维素(钠)培养基即调制的DMEM(含4%羧甲基纤维素,2%FBS);羊抗兔二抗(生物素标记)/(辣根过氧化物酶标记)、兔抗人β-actin抗体、SP试剂盒、DAB:北京中杉生物制剂公司。pcDNA3.1质粒购自美国Invitrogen公司,pcDNA3.1-AY质粒及AY蛋白多克隆抗体由本课题组前期制备并鉴定[1]。
1.2 实验方法
1.2.1 细胞转染及筛选鉴定
参照文献[2-4]方法以pcDNA3.1-AY及pcDNA3.1转染HEK293细胞。并通过抗生素G418进行稳定转染株筛选。将稳定转染pcDNA3.1-AY的HEK293细胞称为AY细胞,稳定转染pcDNA3.1的HEK293细胞称为pcDNA3.1细胞。
按照文献方法[2-5]分别收集AY细胞、pcDNA3.1细胞及空白HEK293细胞各5×106个,按标准程序裂解细胞,提取蛋白,通过Western blot鉴定细胞中是否表达AY蛋白。其中一抗对照采用兔抗人β-actin单克隆抗体。
1.2.2 病毒滴度测定
将AY细胞、pcDNA3.1细胞及空白HEK293细胞用24孔板培养,再用DMEM孵育,每孔1×105个,每组3个复孔。待细胞80%~90%生长汇合时,每孔加VSV感染混匀,感染复数(multiplicity of infection, MOI)(表示每个细胞受到感染的病毒颗粒数)为0.001。2 h后吸弃培养液,另加DMEM培养基1 mL。从感染后6 h开始,每间隔6 h吸取20 μL上清,保存于-20℃,共吸取6次。
参照文献[6]采用蚀斑分析(plaque assay)方法检测病毒滴度。分离培养以上3组细胞于24孔板,至95%~100%生长汇合。将病毒液以10倍梯度依次稀释,并加到3组细胞中孵育,隔15 min轻摇一次。孵育1 h后,吸弃培养基,用灭菌PBS轻洗一次,加入羧甲基纤维素培养基500 μL继续培养24~48 h。去除培养基后,加入10 g/L结晶紫染色液500 μL,染色20 min。自来水冲洗,观察计数每孔蚀斑,以空斑数目乘以稀释倍数即为病毒滴度。
1.2.3 细胞死亡率检测
上述3组细胞感染VSV 24 h后,用台盼蓝排斥试验检测每组细胞的死亡率。具体方法如下:收集全部细胞上清,用胰酶消化细胞并与相应的上清混合,1 200 r/min离心3 min,沉淀用PBS稀释成106 mL-1的单细胞悬液。按9:1的比例加入0.4%台盼蓝染液混匀,3 min内,用血细胞计数板显微镜下分别计数活细胞和死细胞,计算细胞死亡率。各组均以未感染VSV的细胞作对照。
1.2.4 全基因组cDNA分析
收集指数期生长的AY细胞5×106个,胰酶消化,2 000 r/min离心3 min弃上清,并用PBS洗净胰酶。加1 mL Trizol到细胞沉淀,反复吹打裂解细胞。把该Trizol裂解液保存于生物冰(低于15 ℃)中,送北京博奥生物芯片公司进一步抽提总RNA,并进行全基因组cDNA芯片检测。以pcDNA3.1细胞作平行对照。
1.3 统计学方法
计数资料以x±s表示。3组间比较用单因素方法分析和t检验,两组样本比较用独立样本t检验,生存曲线比较用log-rank检验,P < 0.05为差异有统计学意义。
2. 结果
2.1 基因转染与鉴定
分别提取AY细胞、pcDNA3.1细胞和空白HEK293细胞的总蛋白,Western blot鉴定结果(图 1)显示,在AY细胞组,目标蛋白表达明显较强,表明pcDNA3.1-AY质粒转染成功,稳定表达。
2.2 抗VSV病毒作用
各组细胞感染MOI为0.001的VSV病毒后,在各时间点采用蚀斑法分析并计算病毒滴度,结果(图 2)显示,AY细胞组上清病毒滴度较pcDNA3.1细胞组和空白HEK293细胞组的上清病毒滴度低,18 h时,上述3组细胞上清病毒滴度分别为(7.16±2.33)×105 PFU/mL、(6.25±2.05)×106 PFU/mL、(7.75±2.54)×106 PFU/mL,AY细胞组上清病毒滴度与其余两组的差异接近10倍(P < 0.01),之后3组病毒滴度差异逐渐缩小。
病毒感染24 h后,镜下观察(图 3)表明,AY细胞组、pcDNA3.1细胞组和空白HEK293细胞组的细胞死亡率分别为(35.00±6.68)%、(78.33±15.03)%和(83.34±14.98)%,AY细胞组的细胞死亡率较其余两组降低(P < 0.01)。
2.3 全基因组cDNA分析结果
全基因组cDNA分析结果(附表)显示,与pcDNA3.1细胞对照比较,pcDNA3.1-AY细胞有30个基因表达上调在3倍以上。其中CHRM1上调最高(59倍),其次为MTAP44(55倍),上调在15倍以上的基因有FCER2(37倍)、IFIT4(26倍)、c-fos(23倍)、IP-10(22倍)、IL-8(18倍)、CCL20(16倍)、GIP2(15倍)、ISG15(15倍)。除了FCER和c-fos外,其余受调基因都是已知的干扰素激活基因(IFN-stimulated genes, ISGs)27%、干扰素效应基因(抗病毒基因, 17%)、细胞致炎因子(20%)。
附表 AY稳定转染后表达变化上调3倍以上的基因附表. The genes expressing that up-regulated by more than 3 times after stably transfected with AYDescription GenBank accession No. Gene Fold change IFN-activated genes IFN-induced, hepatitis C virus- associated microtubularaggregate protein (44×103) NM_006417 MTAP44 55.27 Interferon-inducedrotein with tetratricopeptide repeats 4 NM_001549 IFIT4/RIG-G 25.91 IFN-γ-inducible protein 10 NM_001565 IP-10/CXCL10 21.98 Interferon alpha-inducible protein AY888621 GIP2 15.40 Interferon alpha-inducible protein 27 NM_005532 IFI27 9.91 Interferon-induced protein with tetratricopeptide repeats 1 NM_001548 IFIT1/ISG56 5.44 Interferon-stimulated transcription factor 3, gamma 48×103 NM_006084 ISGF3G/IRF9 3.60 Interferon regulatory factor 7 U73036 IRF7 3.05 IFN effector gene Interferon-induced protein with tetratricopeptide repeats 1 NM_001548 IFIT1/ISG56 5.44 2′-5′-oligoadenylate synthetase 3 NM_006187 OAS3 4.44 2′-5′-oligoadenylate synthetase 1 NM_016816 OAS1 3.60 2′-5′-oligoadenylate synthetase-like protein NM_003733 OASL 5.66 IFN-stimulated protein, 15×103 NM_005101 ISG15 14.64 Chemokines and cytokines IFN-γ-inducible protein 10 NM_001565 IP-10/CXCL10 21.98 Interleukin 8 NM_000584 IL-8 18.40 Chemokine (C-C motif) ligand 20 NM_004591 CCL20 16.47 Chemokine (C-C motif) ligand 2 NM_002982 CCL2 4.43 Tumor necrosis factor receptor superfamily, member 9 NM_001561 TNFRSF9 6.75 Tumor necrosis factor receptor superfamily, member 12A NM_016639 TNFRSF12A 4.51 Allergic response Fc fragment of IgE, low affinity Ⅱ, receptor for (CD23) NM_002002 FCER2 36.87 Cell growth and maintenance Cholinergic receptor, muscarinic 1 NM_000738 CHRM1 59.17 v-fos FBJ murine osteosarcoma viral oncogene homolog NM_005252 c-fos 22.92 Fibroblast growth factor 18 NM_003862 FGF18 4.50 Fibroblast growth factor 21 NM_019113 FGF21 4.46 Dual specificity phosphatase 1 NM_004417 DUSP1 3.62 Dual specificity phosphatase 2 NM_004418 DUSP2 3.14 CD44 molecule (Indian blood group) NM_000610 CD44 4.77 CD24 molecule NM_013230 CD24 3.26 Syndecan 4 NM_002999 SDC4 3.70 Collagen, type Ⅱ, alpha 1 NM_033150 COL2A1 3.62 3. 讨论
近年来,一些介导天然免疫的宿主抗病毒小分子不断被发现,干扰素、防御素、抗菌肽、细胞黏着分子(cell adhesion molecule,CAF)、APOBEC家族,以及化学趋化因子如巨噬细胞炎症蛋白1(macrophage inflammatory protein 1,MIP-1)、调节活化正常T细胞表达分泌因子(regulated upon activation normal T-cell expressed and secreted gene,RANTES)、人干扰素诱导蛋白10(C-X-C motif chemokine 10,CXCL10)等,在启动机体早期免疫应答,及时清除感染病原体,调节适应性免疫反应等方面起着重要的作用[7-14]。
在前期研究[1]中,我们筛选出一个功能尚未确知的基因AY358935,生物学信息分析及鉴定结果显示,AY358935基因所表达的蛋白可能是一个VSV病毒感染后的早期反应蛋白,参与了宿主早期的抗病毒应答。在本研究中进一步分析了AY358935对VSV的抗病毒作用,并进行了全基因组cDNA分析。
本研究发现,AY358935基因转染HEK293细胞并感染VSV后,其细胞上清病毒滴度及细胞死亡率,与对照组比较明显降低,镜下观察发现该组细胞收缩,间隙增大,只有少量细胞变圆死亡,而对照的两组细胞形态大部分变圆,脱壁,稀疏,以上结果提示AY358935基因具有抗VSV病毒的作用。为排除AY358935基因对HEK293细胞本身生长的影响,本实验还同时检测到,在不受病毒感染时,各组细胞生长状态一致,死亡率无明显差别,表明AY358935基因表达对HEK293细胞生长无明显影响。
目前对AY358935基因的功能分析未见确切报道,本实验全基因组cDNA分析结果显示,AY358935高表达的细胞,大量基因表达上调,如干扰素激活基因56(IFN-stimulated gene 56,ISG56)、干扰素激活基因15(IFN-stimulated gene 15,ISG15)、寡腺苷酸合成酶1(oligoadenylate synthetase 1, OAS1)、寡腺苷酸合成酶3(oligoadenylate synthetase 3, OAS3)等,也涉及一些重要的趋化因子如CXCL10、巨噬细胞炎性蛋白20抗体基因(C-C motif ligand 20,CCL20)的表达调节。其中涉及天然免疫应答的基因占64%,分别是干扰素激活基因(27%)、干扰素效应基因(17%)、细胞因子和趋化因子(20%)。天然免疫应答是机体防御病毒感染的重要途径。分析认为,AY358935基因抗病毒机制可能是通过调控天然免疫分子应答。
ISGs是受干扰素表达活化,并参与完成干扰素生物学功能的一大类基因。IFN-α/β与细胞膜表面受体结合,激活贾纳斯激酶(Janus kinase,JAK)家族,激活JAK磷酸化信号传导及转录激活因子(signal transducers and activators of transcription,STATs),STATs蛋白同源或异源二聚体化,并与其它因子形成转录复合物,从而激活ISGs的转录[15-17]。虽然大部分ISGs的具体功能还未确知,但很多ISGs在宿主抗病毒防御反应中的重要性已逐渐阐明。
在本研究中,OAS1、OAS3和寡腺苷酸合成酶L(oligoadenylate synthetase L,OASL)作为重要的抗病毒ISGs,在AY358935表达细胞中也明显上调表达,可能贡献于AY358935的抗病毒反应。OAS蛋白酶为dsRNA所激活,激活的OAS通过2′-5′磷酸二酯连接寡聚化ATP,进一步结合和激活核酸分解酶Rnase L,从而降解病毒RNA和细胞RNA,抑制病毒的复制[18]。基因芯片分析结果还显示,随着AY358935的表达增加,ISG15和ISG56的表达水平也分别上升14.64倍及5.44倍。有文献报道,体外细胞在干扰素处理或病毒感染时,ISG15和ISG56基因表达也显著上调[19]。ISG15可能增强干扰素的抗病毒效应,其作用底物分子如JAK、细胞外调节蛋白激酶(extracellular regulated protein kinases,ERK)、双链RNA依赖的蛋白质激酶(double-stranded RNA-dependent protein kinase,PKR)等,大多参与天然免疫反应[20]。
研究发现,干扰素家族成员较多,分为Ⅰ型、Ⅱ型和Ⅲ型,分别包括多个亚类,新的干扰素成员不断涌现[21-23]。一项关于ISGs研究的基因芯片综合分析表明,对于人源或鼠源的细胞系,用IFN-α、IFN-β或IFN-γ处理后,至少筛选出超过300个ISGs。这些ISGs涉及不同功能不同类别,包括宿主防御、免疫调节、信号转导、生长代谢等方面[24-26]。而本实验AY358935表达的HEK293细胞中,所有表达上调基因的生物学功能也涉及宿主防御、免疫调节等,由此推测,作为一个相对分子质量与干扰素类似的分泌蛋白,AY358935抗病毒机制可能也与干扰素相关,甚至不排除属于新类型干扰素基因。倘若如此,该基因在抗病毒方面的研发应用将具有重要价值。
综上,AY358935基因参与病毒感染的早期应答,具有明确的抗VSV病毒作用,其机制可能涉及干扰素相关的天然免疫应答,值得进一步研究。
-
附表 AY稳定转染后表达变化上调3倍以上的基因
附表 The genes expressing that up-regulated by more than 3 times after stably transfected with AY
Description GenBank accession No. Gene Fold change IFN-activated genes IFN-induced, hepatitis C virus- associated microtubularaggregate protein (44×103) NM_006417 MTAP44 55.27 Interferon-inducedrotein with tetratricopeptide repeats 4 NM_001549 IFIT4/RIG-G 25.91 IFN-γ-inducible protein 10 NM_001565 IP-10/CXCL10 21.98 Interferon alpha-inducible protein AY888621 GIP2 15.40 Interferon alpha-inducible protein 27 NM_005532 IFI27 9.91 Interferon-induced protein with tetratricopeptide repeats 1 NM_001548 IFIT1/ISG56 5.44 Interferon-stimulated transcription factor 3, gamma 48×103 NM_006084 ISGF3G/IRF9 3.60 Interferon regulatory factor 7 U73036 IRF7 3.05 IFN effector gene Interferon-induced protein with tetratricopeptide repeats 1 NM_001548 IFIT1/ISG56 5.44 2′-5′-oligoadenylate synthetase 3 NM_006187 OAS3 4.44 2′-5′-oligoadenylate synthetase 1 NM_016816 OAS1 3.60 2′-5′-oligoadenylate synthetase-like protein NM_003733 OASL 5.66 IFN-stimulated protein, 15×103 NM_005101 ISG15 14.64 Chemokines and cytokines IFN-γ-inducible protein 10 NM_001565 IP-10/CXCL10 21.98 Interleukin 8 NM_000584 IL-8 18.40 Chemokine (C-C motif) ligand 20 NM_004591 CCL20 16.47 Chemokine (C-C motif) ligand 2 NM_002982 CCL2 4.43 Tumor necrosis factor receptor superfamily, member 9 NM_001561 TNFRSF9 6.75 Tumor necrosis factor receptor superfamily, member 12A NM_016639 TNFRSF12A 4.51 Allergic response Fc fragment of IgE, low affinity Ⅱ, receptor for (CD23) NM_002002 FCER2 36.87 Cell growth and maintenance Cholinergic receptor, muscarinic 1 NM_000738 CHRM1 59.17 v-fos FBJ murine osteosarcoma viral oncogene homolog NM_005252 c-fos 22.92 Fibroblast growth factor 18 NM_003862 FGF18 4.50 Fibroblast growth factor 21 NM_019113 FGF21 4.46 Dual specificity phosphatase 1 NM_004417 DUSP1 3.62 Dual specificity phosphatase 2 NM_004418 DUSP2 3.14 CD44 molecule (Indian blood group) NM_000610 CD44 4.77 CD24 molecule NM_013230 CD24 3.26 Syndecan 4 NM_002999 SDC4 3.70 Collagen, type Ⅱ, alpha 1 NM_033150 COL2A1 3.62 -
[1] 熊绍权, 杨寒朔, 龙奇达.新基因AY358935的生物信息学分析及功能预测.南方医科大学学报, 2010, 2(30):232-238. http://d.old.wanfangdata.com.cn/Periodical/dyjydxxb201002008 [2] 周丹, 刘雪茹, 李涛, 等.小G蛋白Rab5对表达在HEK293细胞上的大电导钙激活钾通道的影响.山东医药, 2017, 57(8):21-24. DOI: 10.3969/j.issn.1002-266X.2017.08.006 [3] 孟越, 谢苗苗, 林振, 等.甲状旁腺素受体真核表达载体的构建体稳定转染HEK293细胞系的建立.南方医科大学学报, 2013, 33(7):956-961. DOI: 10.3969/j.issn.1673-4254.2013.07.04 [4] 蔡鑫泽, 顾卉, 刘彤, 等.P16 hLMO1编码基因重组质粒的构建及蛋白的表达和定位.中国医科大学学报, 2009, 38(11):816-819. http://www.cnki.com.cn/Article/CJFDTotal-ZGYK200911007.htm [5] LI XY, KUANG Y, HUANG XJ, et al. Preparation and characterization of a new monoclonal antibody against CXCR4 using lentivirus vector.Int Immunopharmacol, 2016, 36:100-105. DOI: 10.1016/j.intimp.2016.04.020
[6] 薛贻敏, 林风辉, 刘艳丽, 等.白细胞介素17A对柯萨奇B3病毒性心肌炎小鼠病毒复制的影响及其机制.临床心血管病杂志, 2017, 33(7):688-693. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=lcxxgbzz201707019 [7] 程仕彤, 冯鹭, 刘丽娜, 等.干扰素对肝纤维化小鼠肝组织中Foxp3调节性T细胞的影响.中国医科大学学报, 2013, 42(5):402-405. DOI: 10.3969/j.issn.0258-4646.2013.05.005 [8] GNANADURAI CW, FU ZF. CXCL10 and blood-brain barrier modulation in rabies virus infection. J Oncotarget, 2016, 7 (10):10694-10695. http://cn.bing.com/academic/profile?id=1434a391f39d07cdfd8aa8edaa6ff491&encoded=0&v=paper_preview&mkt=zh-cn
[9] ZHAO A, LU W, DE LE. Functional synergism of human defensin 5 and human defensin 6. Biochem Biophys Res Commun, 2015, 467(4):967-972. DOI: 10.1016/j.bbrc.2015.10.035
[10] CURRIE SM, FINDLAY EG, MCFARLANE AJ, et al. Cathelicidins have direct antiviral activity against respiratory syncytial virus in vitro and protective function in vivo in mice and humans. J Immunol, 2016, 196(6):2699-2710. DOI: 10.4049/jimmunol.1502478
[11] PEEL E, CHENG Y, DJORDJEVIC JT, et al. Cathelicidins in the Tasmanian devil (Sarcophilus harrisii). Sci Rep, 2016, 6:35019. DOI: 10.1038/srep35019
[12] REBHANDL S, HUEMER M, GREIL R, et al. AID/APOBEC deaminases and cancer. Oncoscience, 2015, 2(4):320-333. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4468319/
[13] LEI Q, GAO B, ZHANG D. Design and preparation of matrine surface-imprinted material and studies on its molecule recognition selectivity. J Biomater Sci Polym Ed, 2016, 27(1):1-21. http://cn.bing.com/academic/profile?id=878b45e3c5342f94a12c286166cad620&encoded=0&v=paper_preview&mkt=zh-cn
[14] SAFA A, RASHIDINEJAD HR, KHALILI M, et al. Higher circulating levels of chemokines CXCL10, CCL20 and CCL22 in patients with ischemic heart disease. Cytokine, 2016, 83: 147-157[2018-10-10].https://doi.org/10.1016/j.cyto.2015.04.006.
[15] GRAWENHOFF J, ENGELMAN AN. Retroviral integrase protein and intasome nucleoprotein complex structures. World J Biol Chem, 2017, 8(1):32-44. DOI: 10.4331/wjbc.v8.i1.32
[16] YIN Y, LIU W, DAI Y. SOCS3 and its role in nassociated diseaseas. Hum Immunol, 2015, 76(10):775-780. DOI: 10.1016/j.humimm.2015.09.037
[17] CHOW KT, GALE MJ. SnapShot: interferon signaling. Cell, 2015, 163(7): 1808e1[2018-10-10]. https://doi.org/10.1016/j.cell.2015.12.008.
[18] 宪庆, 伍参荣. 2′-5′寡聚腺苷酸合成酶(OAS)的活化及抗病毒作用应用研究进展.中外健康文摘, 2012, 9(15):84-86. DOI: 10.3969/j.issn.1672-5085.2012.15.056 [19] HUANG Y, HUANG X, CAI J, et al. Identification of orange-spotted grouper (Epinephelus coioides) interferon regulatory factor 3 involved in antiviral immune response against fish RNA virus. Fish Shellfish Immunol, 2015, 42 (2):345-352. DOI: 10.1016/j.fsi.2014.11.025
[20] HENKES LE, PRU JK, ASHLEY RL, et al. Embryo mortality in Isg15-/-mice is exacerbated by environmental stress. Biol Reprod, 2015, 92(2): 36[2018-10-10]. https://doi.org/10.1095/biolreprod.114.122002.
[21] DONNELLY RP, KOTENKO SV. Interferon-lambda:a new addition to an old family. J Interferon Cytokine Res, 2010, 30(8):555-564. DOI: 10.1089/jir.2010.0078
[22] GIBBERT K, SCHLAAKJ F, YANG D. IFN-alpha subtypes:distinct biological activities in anti-viral therapy. Br J Pharmacol, 2013, 168(5):1048-1058. DOI: 10.1111/bph.12010
[23] DONNELLY RP, KOTENKO SV. Interferon-lambda:a new addition to an old family. J Interferon Cytokine Res, 2010, 30(8):555-564. DOI: 10.1089/jir.2010.0078
[24] DE VEER MJ, HOLKO M, FREVEL M, et al. Functional classification of interferon-stimulated genes identified using microarrays. J Leukoc Biol, 2001, 69(6):912-920. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=2c14ffc803cd56d3ef10b7ff278c5f96
[25] SCHNEIDER WM, CHEVILLOTTE MD, RICE CM. Interferon- stimulated genes: a complex web of host defenses. Annu Rev Immunol, 2014, 32: 513-545[2018-10-10].https://doi.org/10.1146/annurev-immunol-032713-120231.
[26] CHEN Z, MARK C, TIEN YH, et al. Interferon-induced ISG15 pathway:an ongoing virus-host battle. Trends Microbiol, 2013, 21(4):181-186. DOI: 10.1016/j.tim.2013.01.005