欢迎来到《四川大学学报(医学版)》

奈妥吡坦-聚乙二醇聚乳酸共聚物纳米粒的制备与表征

Preparation and Characterization of Netupitant-loaded mPEG-PDLLA Nanoparticles

  • 摘要:
      目的  采用聚乙二醇聚乳酸嵌段共聚物(mPEG-PDLLA)提高奈妥吡坦(netupitant)的水溶性,为开发获得一种奈妥吡坦注射液提供实验基础。
      方法  采用薄膜水化法制备包载奈妥吡坦的mPEG-PDLLA纳米粒(NT/mPEG-PDLLA-NPs),以载药量和粒径为指标,通过单因素考察优化处方(奈妥吡坦与mPEG-PDLLA的药质比)和工艺(成膜温度和时间)。采用激光散射粒度仪和透射电子显微镜对NT/mPEG-PDLLA-NPs的粒径、电位、形态进行表征,采用MTT法对纳米粒的细胞毒性进行表征。
      结果  NT/mPEG-PDLLA-NPs的最佳处方和工艺为:奈妥吡坦与mPEG-PDLLA药质比为1:6, 成膜温度为55 ℃, 成膜时间为30 min。此条件下制备得到的NT-mPEG-PDLLA-NPs呈淡蓝色透明液体,载药量为14%,药物质量浓度高达10 mg/mL,平均粒径58 nm,电位-0.29 mV,电镜下观察纳米粒呈球形或类球形颗粒,药物包载未显著改变奈妥吡坦的细胞毒性。
      结论  成功制备了NT/mPEG-PDLLA-NPs,显著提高了奈妥吡坦的水溶性(10 mg/mL),为开发奈妥吡坦的可注射制剂提供了潜在可行的方法。

     

    Abstract:
      Objective  Methoxy poly (ethylene glycol)-poly (lactic acid) (mPEG-PDLLA) was used to increase water solubility of netupitant, thus to provide the experimental basis for development of the injection of netupitant.
      Methods  Film hydration method was ultilized to prepare the netupitant-loaded mPEG-PDLLA nanoparticles (NT/mPEG-PDLLA-NPs). The preparation formulation and technology were optimized based on the single factor tests by investigating the effect of netupitant/mPEG-PDLLA mass ratio (m/m), filming temperature and time on the mean particle diameters and loading capacities. The size distributions and Zeta potentials of NT/mPEG-PDLLA-NPs were investigated using dynamic light scattering analysis, and the morphology was observed under the transmission electron microscope (TEM). The cytotoxicity of NT/mPEG-PDLLA-NPs evaluated by MTT method.
      Results  The optimal NT/mPEG-PDLLA-NPs were achieved at the netupitant/mPEG-PDLLA mass ratio of 1/6 with filming temperature at 55 ℃ and filming time for 30 min. The resulting NT/mPEG-PDLLA-NPs displayed an opalescent and translucent appearance, with a high loading capacity of 14% and netupitant concentration of 10 mg/mL. NT/mPEG-PDLLA-NPs showed a spherical morphology, with a mean diameter of 58 nm and a nearly neutral Zeta potential of -0.29 mV. The NT/mPEG-PDLLA-NPs showed a cytotoxicity similar to free NT.
      Conclusion  Netupitant was successfully loaded into mPEG-PDLLA-NPs to significantly increased the water solubility, thus providing the experimental foundation for the further development of injection of netupitant.

     

/

返回文章
返回