欢迎来到《四川大学学报(医学版)》 2025年4月6日 星期日

奥氮平通过抑制NLRP3炎症小体激活对抑郁症模型大鼠海马神经元的保护作用

岳凌峰, 仲照希, 马敬, 王宁

岳凌峰, 仲照希, 马敬, 等. 奥氮平通过抑制NLRP3炎症小体激活对抑郁症模型大鼠海马神经元的保护作用[J]. 四川大学学报(医学版), 2019, 50(5): 672-678.
引用本文: 岳凌峰, 仲照希, 马敬, 等. 奥氮平通过抑制NLRP3炎症小体激活对抑郁症模型大鼠海马神经元的保护作用[J]. 四川大学学报(医学版), 2019, 50(5): 672-678.
YUE Ling-feng, ZHONG Zhao-xi, MA Jing, et al. The Protective Effect of Olanzapine on the Hippocampal Neuron of Depression Model Rats via Inhibiting NLRP3 Inflammasome Activation[J]. Journal of Sichuan University (Medical Sciences), 2019, 50(5): 672-678.
Citation: YUE Ling-feng, ZHONG Zhao-xi, MA Jing, et al. The Protective Effect of Olanzapine on the Hippocampal Neuron of Depression Model Rats via Inhibiting NLRP3 Inflammasome Activation[J]. Journal of Sichuan University (Medical Sciences), 2019, 50(5): 672-678.

栏目: 论著

奥氮平通过抑制NLRP3炎症小体激活对抑郁症模型大鼠海马神经元的保护作用

基金项目: 

*河南省科技攻关项目 No.182102310242

详细信息
    通讯作者:

    仲照希. E-mail:zzxzzx9268@tom.com

The Protective Effect of Olanzapine on the Hippocampal Neuron of Depression Model Rats via Inhibiting NLRP3 Inflammasome Activation

More Information
  • 摘要:
      目的  探究奥氮平(OLA)对抑郁症模型大鼠海马神经元的影响及作用机制。
      方法  将大鼠分为对照组、慢性不可预见性应激(CUS)组、OAL (0.5、1、2 mg/kg)组、si-Atg5及OAL (2 mg/kg)+si-Atg5组,旷场实验及糖水偏好实验评估大鼠行为学表现,Tunnel检测细胞凋亡,ELISA检测白介素(IL)-1β、IL-18质量浓度,Western blot检测cleaved Caspase-3,cleaved Caspase-9,自噬相关蛋白LC3、Beclin1、P62,炎症小体NLRP3及cleaved Caspase-1表达水平。
      结果  0.5、1、2 mg/kg OAL均可增加CUS大鼠自发活动总路程、糖水消耗量及偏好率,降低大鼠IL-18血清质量浓度,海马CA3区凋亡细胞百分比,cleaved Caspase-9、cleaved Caspase-1、NLRP3表达;0.5 mg/kg OAL对cleaved Caspase-3表达及IL-1β血清质量浓度无影响,1、2 mg/kg OAL可降低cleaved Caspase-3表达及IL-1β血清质量浓度。si-Atg5可减小CUS大鼠自发活动总路程、糖水消耗量及偏好率,提高cleaved Caspase-3、cleaved Caspase-9、cleaved Caspase-1、NLRP3表达,并减弱2 mg/kg OAL产生的影响。同时,0.5、1、2 mg/kg OAL均可提高大鼠海马CA3区LC3Ⅱ/LC3Ⅰ比值及Beclin1表达;0.5 mg/kg OAL对P62表达无影响,1、2 mg/kg OAL可降低P62表达。si-Atg5可降低LC3Ⅱ/LC3Ⅰ比值及Beclin1的表达, 并减弱2 mg/kg OAL产生的作用。
      结论  OAL可通过抑制NLRP3炎症小体激活对CUS大鼠海马神经元产生保护作用。

     

    Abstract:
      Objective  To determine the impact olanzapine (OLA) on the hippocampal neuron of model rats with depression.
      Methods  Rats were divided into five groups: control, chronic unpredicted stress (CUS), OAL (0.5, 1, 2 mg/kg), si-Atg5, and OAL (2 mg/kg)+si-Atg5. Open field and sucrose preference tests were performed to evaluate rat behaviors. Cell apoptosis was detected with Tunnel. The concentrations of interleukin (IL)-1β and IL-18 were determined by ELISA. The expressions of cleaved Caspase-3, cleaved Caspase-9, LC3, Beclin1, P62, NLRP3 and cleaved Caspase-1 were measured by Western blot.
      Results  OAL (0.5, 1, 2 mg/kg) increased the total moving distance, sucrose consumption and preference rate of CUS rats, and decreased serum IL-18, cell apoptosis and the expressions of cleaved Caspase-9, cleaved Caspase-1 and NLRP3 in the CA3 region of hippocampus. Although OAL (1, 2 mg/kg) decreased the expression of cleaved Caspase-3 and serum IL-1β, OAL (0.5 mg/kg) showed no detectable effects. Si-Atg5 decreased the total moving distance, sucrose consumption and preference rate of CUS rats, enhanced the expressions of cleaved Caspase-3, cleaved Caspase-9, cleaved Caspase-1 and NLRP3, and weakened the effect of OAL (2 mg/kg). OAL (0.5, 1, 2 mg/kg) also increased the LC3Ⅱ/LC3Ⅰ ratio and the expression of Beclin1 in the CA3 region of hippocampus. OAL (1, 2 mg/kg) reduced the expression of p62, but not when it was reduced to 0.5 mg/kg. Si-Atg5 reduced the LC3Ⅱ/LC3Ⅰ ratio and the expression of Beclin1, and weakened the function of OAL (2 mg/kg).
      Conclusion  OAL can protect the hippocampal neuron of CUS rats via inhibiting NLRP3 inflammasome activation.

     

  • 抑郁症是常见的精神疾病,以情绪低落、快感缺失、长期失眠及认知障碍为主要临床表现,重度抑郁症患者往往具有自杀倾向[1]。随着都市生活节奏的加快,人们承受的压力日益增大,抑郁症发病率逐年增高。全球目前约有3.5亿人受到抑郁症的困扰,探索抑郁症的治疗方法成为医学界研究热点[2]。奥氮平(OAL)是一种作用于多巴胺和5-羟色胺受体的非典型抗精神病药,可通过拮抗多巴胺受体减少精神病患者的阳性症状,如幻觉、妄想、言语、思维及行为紊乱,通过拮抗5-羟色胺受体减少精神病患者的阴性症状,如情绪低落、冷漠、快感缺失及注意力不足[3]。同时,OAL也是治疗双相抑郁症的主要药物之一[4],其与氟西汀联合使用可显著地缓解双相抑郁症状[5]。目前,OAL在国内临床应用时间并不长,其对患者海马神经元产生的影响还有待深入研究。因此,本实验通过建立大鼠慢性不可预见性应激(CUS)模型,对OAL在海马神经元中的影响及作用机制进行深入探究。

    42只3周龄SPF级SD大鼠购自河南远大生物制药有限公司,许可证号:SYXK(豫)2017-0014;OAL购自美国Eli Lilly; Tunnel试剂盒及BCA试剂盒购自上海碧云天;白介素(IL)-1β及IL-18 ELISA试剂盒购自美国Invirtrogen;实验所用蛋白抗体均购自美国Cell Signaling Technology;二抗均购自北京中杉金桥;si-Atg5购自上海生工生物。

    将42只SD大鼠分为对照,CUS、OAL (0.5、1、2 mg/kg)、si-Atg5及OAL (2 mg/kg)+si-Atg5组,每组6只。除对照组以外,其余各组均建立大鼠CUS抑郁症模型,OAL用药浓度[6]及大鼠CUS抑郁症模型建立方法[7]参考既往文献。通过旷场实验、糖水偏好实验检测造模情况。造模成功后,OAL(0.5、1、2 mg/kg)组分别灌胃给予0.5、1、2 mg/kg OAL,si-Atg5组用si-Atg5腺病毒转染大鼠,OAL (2 mg/kg)+si-Atg5组用si-Atg5腺病毒转染大鼠并灌胃给予2 mg/kg OAL,CUS组则给予等量生理盐水,每日1次,持续给予3周后,收集大鼠外周血,处死大鼠后剥离大脑海马CA3区组织,石蜡包埋脑组织,用于后期检测。

    造模前后将各组大鼠单独置于透明观察室,适应10 min后,记录其5 min内自发活动路程。观察后,每只大鼠用清洁剂清洗并干燥。

    将各组大鼠单独置于饲养笼中,进行预实验,第一日,笼中放置2瓶1%蔗糖溶液,第二日用自来水取代其中1瓶蔗糖溶液。适应后,断粮水供应24 h,于上午9点进行正式实验。笼中分别放置100 mL自来水及蔗糖溶液各1瓶,1 h后,记录蔗糖溶液及自来水消耗体积,糖水偏好率=糖水消耗量/(水消耗量+糖水消耗量)×100%。

    将脑海马区组织石蜡包埋切片,然后将切片脱蜡、水洗、苏木精液染色、水洗;再用1%盐酸酒精分化,水洗;0.6%氨水返蓝,水洗;0.5%伊红液染色,水洗;接着脱水,二甲苯透明;最后中性树胶封片,每组取6张切片,在400倍显微镜观察海马区组织损伤情况。

    将大鼠大脑海马组织石蜡切片脱蜡修复,内源性过氧化物酶作用5 min后,PBS洗涤。滴加Tunnel检测液37 ℃避光孵育1 h后,PBS洗涤。利用DAB显色液避光显色,苏木精复染。暗室内观察切片,显微镜视野下,棕色为凋亡细胞,蓝色为正常细胞。每组取6张切片于400倍镜下观察。凋亡率(%)=凋亡细胞数/细胞总数×100%。

    利用ELISA试剂盒测定IL-1β、IL-18血清质量浓度,步骤参考试剂盒说明书。避光显色,利用酶标仪读取吸光度(A)值,根据标准样品曲线公式计算各样品A值对应的蛋白质量浓度。

    RIPA裂解海马CA3区脑组织,提取总蛋白。BCA试剂盒将蛋白定量并调平。取蛋白30 g,10% SDS-PAGE将蛋白分离,湿转法将蛋白转移至PVDF膜,脱脂奶粉室温封闭2 h,各蛋白对应一抗4 ℃孵育过夜,二抗37 ℃ 1 h,最后曝光显色,以GAPDH为内参,薄膜由Bio-rad凝胶DocEZ成像仪拍摄,利用Image J软件分析检测Capase-3、-9、NLRP3、LC3、Beclin1和P62蛋白条带的灰度值与内参蛋白带的灰度值比值。

    所有数据先进行正态分布和方差齐性分析,符合条件的选用单因素方差分析或t检验,不符合条件的选用秩和检验。P < 0.05为差异有统计学意义。

    造模前各组大鼠自发活动总路程长度差异无统计学意义。造模后,与对照组比较,CUS组、si-Atg5组和DAL+si-Atg5组大鼠自发活动总路程长度、糖水消耗量及偏好率降低(P < 0.01),说明造模成功。干预3周后,与CUS组比较,OAL (0.5 mg/kg)、(1 mg/kg)及(2 mg/kg)组中大鼠自发活动总路程长度、糖水消耗量及偏好率升高(P < 0.05);si-Atg5组大鼠自发活动总路程长度、糖水消耗量及偏好率降低(P < 0.05)。与OAL (2 mg/kg)组比较,OAL (2 mg/kg)+si-Atg5组大鼠自发活动总路程长度、糖水消耗量及偏好率降低(P < 0.05)。见表 1

    表  1  造模前后各组大鼠旷场实验和糖水偏好实验结果(n=6)
    Table  1.  Open field tests and post-intervention sucrose preference tests on rats (n=6)
    Group The total moving distance/cm Sucrose preference rate/%
    Before model After model Before model After model After drug
    Control 336.4±45.6 489.7±78.2 74.9±2.3 75.0±4.3 75.2±6.9
    CUS 328.6±58.3 125.3±54.4** 74.8±3.2 45.7±6.5** 45.8±9.6**
    OAL (0.5 mg/kg) 331.3±47.6 378.3±96.5# 75.1±2.2 45.8±5.3** 55.2±9.6*,#
    OAL (1 mg/kg) 352.2±68.2 421.6±87.3# 74.9±2.4 45.6±6.8** 64.3±10.6#
    OAL (2 mg/kg) 345.7±52.1 463.2±89.7## 75.2±2.7 45.9±5.9** 74.9±9.6##
    si-Atg5 324.1±66.5 88.6±18.9**,# 74.8±3.4 45.8±4.9** 27.3±5.2**,#
    OAL+si-Atg5 336.3±72.3 217.6±36.5**,&& 75.0±4.5 45.7±5.2** 55.8±6.9*,&
    P < 0.05, ** P < 0.01, vs. control group; # P < 0.05, ## P < 0.01, vs. CUS group; & P < 0.05, && P < 0.01, vs. OAL (2 mg/kg) group
    下载: 导出CSV 
    | 显示表格

    图 1。与对照组比较,CUS组大鼠海马CA3区发生明显的病理损伤,细胞核浓缩,细胞质减少,细胞核染色加深;与CUS组比较,大鼠经过不同质量浓度的OAL治疗后,细胞核逐渐舒展,细胞形态恢复正常,神经突出逐渐长出;并且随着药物剂量的增加,组织细胞形态越接近对照组;si-Atg5组大鼠海马CA3区病理损伤加重,细胞核浓缩程度、细胞质减少程度、细胞核染色均加重;与OAL (2 mg/kg)组比较,OAL (2 mg/kg)+si-Atg5组大鼠海马区细胞核浓缩程度、细胞质减少程度、细胞核染色均加重。

    图  1  各组大鼠海马CA3区细胞损伤。HE ×400
    Figure  1.  The injury of tissue cells in the CA3 region of hippocampus by group. HE ×400
    A: Control group; B: CUS group; C: OAL (0.5 mg/kg) group; D: OAL (1.0 mg/kg) group; E: OAL (2.0 mg/kg) group; F: si-Atg5 group; G: OAL (2 mg/kg)+si-Atg5 group

    图 2~图 4。与对照组比较,CUS组、OAL(0.5、1 mg/kg)组、si-Atg5组及OAL (2 mg/kg)+si-Atg5组大鼠海马CA3区凋亡细胞百分比(P < 0.01)、cleaved Caspase-3及cleaved Caspase-9表达(P < 0.01)升高。与CUS组比较,OAL (0.5 mg/kg)、(1 mg/kg)及(2 mg/kg)组中凋亡细胞百分比降低(P < 0.01);OAL (0.5 mg/kg)组cleaved Caspase-3表达无明显变化,cleaved Caspase-9表达降低(P < 0.05);OAL (1 mg/kg)及(2 mg/kg)组中cleaved Caspase-3、cleaved Caspase-9表达均降低(P < 0.05,P < 0.01);si-Atg5组凋亡细胞百分比升高(P < 0.01),cleaved Caspase-3、cleaved Caspase-9表达均升高(P < 0.01)。与OAL (2 mg/kg)组比较,OAL (2 mg/kg)+si-Atg5组凋亡细胞百分比升高(P < 0.01),cleaved Caspase-3、cleaved Caspase-9表达均升高(P < 0.01)。

    图  2  各组大鼠海马CA3区凋亡细胞。Tunnel染色 ×400
    Figure  2.  Cell apoptosis in the CA3 region of hippocampus by group. Tunnel staining ×400
    A-G denote the same as fig1
    图  3  各组大鼠海马CA3区凋亡细胞百分比
    Figure  3.  The apoptosis rate of cells in the CA3 region of hippocampus by group
    A-G denote the same as fig 1.**P < 0.01, vs. control group; #P < 0.05, ##P < 0.01, vs. CUS group; &&P < 0.01, vs. OAL (2 mg/kg) group
    图  4  各组中cleaved Caspase-3、cleaved Caspase-9的表达
    Figure  4.  The expressions of cleaved Caspase-3 and cleaved Caspase-9 in the CA3 region of hippocampus by group
    A-G denote the same as fig 1.*P < 0.05,**P < 0.01,vs. control group; #P < 0.05, ##P < 0.01 ,vs. CUS group; &P < 0.05, &&P < 0.01,vs. OAL (2 mg/kg) group

    图 5图 6。与对照组比较,CUS组、OAL(0.5、1 mg/kg)组、si-Atg5组及OAL (2 mg/kg)+si-Atg5组大鼠IL-1β、IL-18血清质量浓度、海马CA3区cleaved Caspase-1、NLRP3表达升高(P < 0.01)。与CUS组比较,OAL (0.5 mg/kg)组IL-1β质量浓度差异无统计学意义,OAL (1 mg/kg)及OAL(2 mg/kg)组中IL-1β质量浓度降低(P < 0.01);同时,OAL (0.5 mg/kg)、(1 mg/kg)及(2 mg/kg)组中IL-18质量浓度(P < 0.05,P < 0.01)、cleaved Caspase-1、NLRP3表达(P < 0.05,P < 0.01)均降低;si-Atg5组大鼠IL-1β、IL-18血清质量浓度(P < 0.01)、海马CA3区cleaved Caspase-1、NLRP3表达(P < 0.01)升高。与OAL (2 mg/kg)组比较,OAL (2 mg/kg)+si-Atg5组大鼠IL-1β、IL-18血清质量浓度(P < 0.01)、海马CA3区cleaved Caspase-1、NLRP3表达(P < 0.01)升高。

    图  5  各组大鼠血清IL-1β、IL-18质量浓度
    Figure  5.  Serum concentrations of IL-1β and IL-18 by group
    A-G denote the same as fig 1.**P < 0.01, vs. control group; #P < 0.05, ##P < 0.01, vs. CUS group; &&P < 0.01, vs. OAL (2 mg/kg) group
    图  6  各组大鼠海马CA3区组织cleaved Caspase-1、NLRP3的表达
    Figure  6.  The expressions of cleaved Caspase-1 and NLRP3 in the CA3 region of hippocampus by group
    A-G denote the same as fig 1.**P < 0.01, vs. control group; #P < 0.05, ##P < 0.01, vs. CUS group; &&P < 0.01, vs. OAL (2 mg/kg) group

    图 7。与对照组比较,CUS组大鼠海马CA3区LC3Ⅱ/LC3Ⅰ比值、Beclin1表达降低,P62表达升高(P < 0.01)。与CUS组比较,OAL (0.5 mg/kg)、(1 mg/kg)及(2 mg/kg)组中LC3Ⅱ/LC3Ⅰ比值、Beclin1表达升高(P < 0.01);OAL (0.5 mg/kg)组P62表达差异无统计学意义,(1 mg/kg)及(2 mg/kg)组中P62表达均降低(P < 0.01);si-Atg5组LC3Ⅱ/LC3Ⅰ比值、Beclin1表达降低(P < 0.05,P < 0.01),P62表达升高(P < 0.01)。与OAL (2 mg/kg)组比较,OAL (2 mg/kg)+si-Atg5组LC3Ⅱ/LC3Ⅰ比值、Beclin1表达降低(P < 0.01),P62表达升高(P < 0.01)。

    图  7  各组中LC3、Beclin1、P62的表达
    Figure  7.  The expressions of LC3, Beclin1 and P62 in the CA3 region of hippocampus by group
    A-G denote the same as fig1. *P < 0.01, vs. control group; ##P < 0.01, vs. CUS group; &P < 0.01, vs. OAL (2 mg/kg) group

    抑郁症可引起患者精神沉郁、快感缺失,改善患者精神状态是抑郁症治疗药物的首要目的[8]。研究发现,脑组织中5-羟色胺水平降低是引起抑郁症发生的重要原因[9],抗抑郁药OAL是多巴胺/5-羟色胺受体双摄取抑制剂,主要用于治疗双相抑郁症。有报道表明,OAL联合5-羟色胺再摄取抑制剂可显著提高神经元细胞培养上清中5-羟色胺的浓度[10]。本研究发现,0.5、1、2 mg/kg OAL均可显著提高CUS大鼠自发活动总路程、糖水消耗量及偏好率,且随OAL浓度的增加,其对CUS大鼠的作用愈明显。通过对大鼠行为学表现评估表明,OAL可显著改善CUS大鼠的精神状态。

    有研究发现,在抑郁症患者脑组织中,海马区神经元细胞发生过度凋亡[11]。海马CA3区是介导应激反应的主要脑区,也是调控人类情绪、记忆及内分泌的重要部位,抑制海马神经元细胞凋亡已成为有效治疗抑郁症的目标[12]。研究表明,OAL对神经元细胞具有显著保护作用,可显著减弱血清戒断诱导的神经元细胞凋亡[13],降低氧化应激条件下神经元细胞的凋亡水平[14]。在本研究中也发现1、2 mg/kg OAL均可显著降低大鼠海马CA3区凋亡细胞百分比,cleaved Caspase-3、cleaved Caspase-9及cleaved Caspase-1的表达。cleaved Caspase-3、cleaved Caspase-9及cleaved Caspase-1均属于Caspase蛋白水解酶家族,凋亡信号可通过触发Caspase级联反应完成细胞凋亡程序[15]

    炎症反应可显著诱导抑郁症的发生,同时,抑郁症可显著引起脑组织炎性浸润[16]。因此,抑制机体炎症反应是阻碍抑郁症发生发展的有效手段。研究发现,在神经退行性疾病多系统萎缩中,OAL可显著抑制模型小鼠中核因子-κB (NF-κB)的核易位,降低炎症因子IL-1β的表达水平[17];在应激模型小鼠中,OAL可显著降低小鼠IL-1β和IL-6血清浓度[18]。在本研究中,1、2 mg/kg OAL可显著降低CUS大鼠IL-18及IL-1β血清浓度,同时,0.5、1、2 mg/kg OAL可显著抑制海马CA3区NLRP3炎症小体的表达。NLRP3炎症小体是炎症反应的关键核心,能招募并活化Caspase-1,促进炎症因子IL-1β和IL-18成熟,可作为各种炎症疾病的治疗靶点[19]。NLRP3炎症小体过度激活还可诱导神经元细胞凋亡的发生,抑制NLRP3炎症小体活化可显著减轻CUS模型小鼠抑郁样行为[20]。本实验结果提示,OAL可通过阻碍NLRP3炎症小体激活减轻CUS大鼠的炎症反应。

    研究表明,自噬对抑郁症有正向调节作用,如抗抑郁药阿米替林及西酞普兰可提高神经元自噬水平,显著改善模型大鼠抑郁症状[21];锂可通过诱导自噬显著减少病理朊蛋白的表达水平[22]。本研究中,0.5、1、2 mg/kg OAL均可提高大鼠海马CA3区LC3Ⅱ/LC3Ⅰ比值及Beclin1表达,1、2 mg/kg OAL可降低P62表达。Beclin1是促自噬蛋白,可诱导自噬相关蛋白定位于自噬体膜上,P62是自噬特异性底物,在自噬发生过程中被不断降解,LC3Ⅱ和LC3Ⅰ是LC3的不同表现形式,LC3Ⅰ转变成LC3Ⅱ标志着自噬的形成[23]。本实验结果表明,OAL可显著提高CUS大鼠海马CA3区神经元细胞自噬水平。

    据报道,自噬与NLRP3炎症小体密切相关,自噬水平的升高可显著抑制NLRP3炎症小体的激活[24],NLRP3炎症小体过度活化可引起自噬水平显著降低[25]。Atg5是重要的自噬相关介质,沉默Atg5可诱发NLRP3炎症小体过度活化[21]。本研究利用si-Atg5诱导NLRP3炎症小体过度激活发现,CUS大鼠海马CA3区LC3Ⅱ/LC3Ⅰ比值及Beclin1表达降低,cleaved Caspase-1、cleaved Caspase-3、cleaved Caspase-9表达升高,CUS大鼠自发活动总路程、糖水消耗量及偏好率显著减小。同时,2 mg/kg OAL对CUS大鼠产生的影响被si-Atg5显著减弱。实验结果表明,NLRP3炎症小体过度激活可显著降低CUS大鼠海马CA3区神经元自噬水平,提高炎症反应及细胞凋亡水平,加剧CUS大鼠抑郁症状,并减弱OAL产生的作用。虽然自噬与凋亡在代谢途径和形态学方面有着显著区别,但是他们发挥作用的信号通路却有着交互作用。此外也有研究报道,喜树碱可以通过促进NSCLC自噬而阻止细胞发生程序性死亡[26]

    综上所述,OAL可阻碍NLRP3炎症小体激活,显著减轻CUS大鼠炎症反应,抑制大鼠海马CA3区神经元细胞凋亡,提高神经元细胞自噬水平,改善大鼠的精神状态。同时,NLRP3炎症小体过度激活可显著降低CUS大鼠海马CA3区神经元自噬水平,提高炎症反应及细胞凋亡水平,加剧CUS大鼠抑郁症状,并减弱OAL产生的作用。提示OAL可通过抑制NLRP3炎症小体激活对抑郁症模型大鼠海马神经元产生保护作用,为OAL临床应用提供理论依据。

  • 图  1   各组大鼠海马CA3区细胞损伤。HE ×400

    Figure  1.   The injury of tissue cells in the CA3 region of hippocampus by group. HE ×400

    A: Control group; B: CUS group; C: OAL (0.5 mg/kg) group; D: OAL (1.0 mg/kg) group; E: OAL (2.0 mg/kg) group; F: si-Atg5 group; G: OAL (2 mg/kg)+si-Atg5 group

    图  2   各组大鼠海马CA3区凋亡细胞。Tunnel染色 ×400

    Figure  2.   Cell apoptosis in the CA3 region of hippocampus by group. Tunnel staining ×400

    A-G denote the same as fig1

    图  3   各组大鼠海马CA3区凋亡细胞百分比

    Figure  3.   The apoptosis rate of cells in the CA3 region of hippocampus by group

    A-G denote the same as fig 1.**P < 0.01, vs. control group; #P < 0.05, ##P < 0.01, vs. CUS group; &&P < 0.01, vs. OAL (2 mg/kg) group

    图  4   各组中cleaved Caspase-3、cleaved Caspase-9的表达

    Figure  4.   The expressions of cleaved Caspase-3 and cleaved Caspase-9 in the CA3 region of hippocampus by group

    A-G denote the same as fig 1.*P < 0.05,**P < 0.01,vs. control group; #P < 0.05, ##P < 0.01 ,vs. CUS group; &P < 0.05, &&P < 0.01,vs. OAL (2 mg/kg) group

    图  5   各组大鼠血清IL-1β、IL-18质量浓度

    Figure  5.   Serum concentrations of IL-1β and IL-18 by group

    A-G denote the same as fig 1.**P < 0.01, vs. control group; #P < 0.05, ##P < 0.01, vs. CUS group; &&P < 0.01, vs. OAL (2 mg/kg) group

    图  6   各组大鼠海马CA3区组织cleaved Caspase-1、NLRP3的表达

    Figure  6.   The expressions of cleaved Caspase-1 and NLRP3 in the CA3 region of hippocampus by group

    A-G denote the same as fig 1.**P < 0.01, vs. control group; #P < 0.05, ##P < 0.01, vs. CUS group; &&P < 0.01, vs. OAL (2 mg/kg) group

    图  7   各组中LC3、Beclin1、P62的表达

    Figure  7.   The expressions of LC3, Beclin1 and P62 in the CA3 region of hippocampus by group

    A-G denote the same as fig1. *P < 0.01, vs. control group; ##P < 0.01, vs. CUS group; &P < 0.01, vs. OAL (2 mg/kg) group

    表  1   造模前后各组大鼠旷场实验和糖水偏好实验结果(n=6)

    Table  1   Open field tests and post-intervention sucrose preference tests on rats (n=6)

    Group The total moving distance/cm Sucrose preference rate/%
    Before model After model Before model After model After drug
    Control 336.4±45.6 489.7±78.2 74.9±2.3 75.0±4.3 75.2±6.9
    CUS 328.6±58.3 125.3±54.4** 74.8±3.2 45.7±6.5** 45.8±9.6**
    OAL (0.5 mg/kg) 331.3±47.6 378.3±96.5# 75.1±2.2 45.8±5.3** 55.2±9.6*,#
    OAL (1 mg/kg) 352.2±68.2 421.6±87.3# 74.9±2.4 45.6±6.8** 64.3±10.6#
    OAL (2 mg/kg) 345.7±52.1 463.2±89.7## 75.2±2.7 45.9±5.9** 74.9±9.6##
    si-Atg5 324.1±66.5 88.6±18.9**,# 74.8±3.4 45.8±4.9** 27.3±5.2**,#
    OAL+si-Atg5 336.3±72.3 217.6±36.5**,&& 75.0±4.5 45.7±5.2** 55.8±6.9*,&
    P < 0.05, ** P < 0.01, vs. control group; # P < 0.05, ## P < 0.01, vs. CUS group; & P < 0.05, && P < 0.01, vs. OAL (2 mg/kg) group
    下载: 导出CSV
  • [1]

    SONG W, LI H, GUO T, et al. Effect of affective reward on cognitive event-related potentials and its relationship with psychological pain and suicide risk among patients with major depressive disorder. Suicide Life Threat Behav, 2018 Nov 2[2018-12-19]. https://doi.org/10.1111/sltb.12524.

    [2]

    SOLEM S, HAGEN R, WANG C E, et al. Metacognitions and mindful attention awareness in depression:a comparison of currently depressed, previously depressed and never depressed individuals. Clin Psychol Psychother, 2017, 24(1):94-102. DOI: 10.1002/cpp.1983

    [3]

    DAVIES S J C, MULSANT B H, FLINT A J, et al. SSRI-antipsychotic combination in psychotic depression:Sertraline pharmacokinetics in the presence of olanzapine, a brief report from the STOP-PD study. Hum Psychopharmacol, 2016, 31(3):252-255. https://www.ncbi.nlm.nih.gov/pubmed/27060853

    [4]

    CITROME L. Treatment of bipolar depression:making sensible decisions. CNS Spectr, 2014, 19 Suppl 1:4-11. http://med.wanfangdata.com.cn/Paper/Detail/PeriodicalPaper_PM25407667

    [5]

    TOHEN M, VIETA E, CALABRESE J, et al. Efficacy of olanzapine and olanzapine-fluoxetine combination in the treatment of bipolarⅠ depression. Arch Gen Psychiatry, 2003, 60(11):1079-1088. DOI: 10.1001/archpsyc.60.11.1079

    [6]

    NINAN I, KULKARNI S K. Preferential inhibition of dizocilpine-induced hyperlocomotion by olanzapine. Eur J Pharmacol, 1999, 368(1):1-7. http://med.wanfangdata.com.cn/Paper/Detail/PeriodicalPaper_PM10096763

    [7]

    BANERJEE R, HAZRA S, GHOSH A K, et al. Chronic administration of bacopa monniera increases BDNF protein and mRNA expressions:a study in chronic unpredictable stress induced animal model of depression. Psychiatry Investig, 2014, 11(3):297-306. DOI: 10.4306/pi.2014.11.3.297

    [8]

    WILLIAMS L J, PASCO J A, JACKSON H, et al. Depression as a risk factor for fracture in women: a 10 year longitudinal study. J Affect Disord, 2016, 192:34-40. DOI: 10.1016/j.jad.2015.11.048

    [9]

    CHHIBBER A, WOODY S K, KARIM RUMI M A, et al. Estrogen receptor beta deficiency impairs BDNF-5-HT2A signaling in the hippocampus of female brain: a possible mechanism for menopausal depression. Psychoneuroendo-crinology, 2017, 82:107-116. DOI: 10.1016/j.psyneuen.2017.05.016

    [10]

    ASAOKA N, NAGAYASU K, NISHITANI N, et al. Olanzapine augments the effect of selective serotonin reuptake inhibitors by suppressing GABAergic inhibition via antagonism of 5-HT(6) receptors in the dorsal raphe nucleus. Neuropharmacology, 2015, 95:261-268. DOI: 10.1016/j.neuropharm.2015.03.032

    [11]

    QIN T, FANG F, SONG M, et al. Umbelliferone reverses depression-like behavior in chronic unpredictable mild stress-induced rats by attenuating neuronal apoptosis via regulating ROCK/Akt pathway. Behav Brain Res, 2017, 317:147-156. DOI: 10.1016/j.bbr.2016.09.039

    [12]

    LIU W X, WANG J, XIE Z M, et al. Regulation of glutamate transporter 1 via BDNF-TrkB signaling plays a role in the anti-apoptotic and antidepressant effects of ketamine in chronic unpredictable stress model of depression. Psychopharmacology, 2016, 233(3):405-415. DOI: 10.1007/s00213-015-4128-2

    [13]

    KIM N R, PARK S W, LEE J G, et al. Protective effects of olanzapine and haloperidol on serum withdrawal-induced apoptosis in SH-SY5Y cells. Prog Neuropsychopharmacol Biol Psychiatry, 2008, 32(3):633-642. DOI: 10.1016/j.pnpbp.2007.11.002

    [14]

    WANG H, XU H, DYCK L E, et al. Olanzapine and quetiapine protect PC12 cells from beta-amyloid peptide(25-35)-induced oxidative stress and the ensuing apoptosis. J Neurosci Res, 2005, 81(4):572-580. DOI: 10.1002/jnr.20570

    [15]

    BELMOKHTAR C A, HILLION J, SEGALBENDI-RDJIAN E. Staurosporine induces apoptosis through both caspase-dependent and caspase-independent mechanisms. Oncogene, 2001, 20(26):3354-3362. DOI: 10.1038/sj.onc.1204436

    [16]

    KIECOLT-GLASER J K, DERRY H M, FAGUNDES C P. Inflammation:depression fans the flames and feasts on the heat. Am J Psychiatry, 2015, 172(11):1075-1091. DOI: 10.1176/appi.ajp.2015.15020152

    [17]

    VALERA E, UBHI K, MANTE M, et al. Antidepressants reduce neuroinflammatory responses and astroglial alpha-synuclein accumulation in a transgenic mouse model of multiple system atrophy. Glia, 2014, 62(2):317-337. DOI: 10.1002/glia.22610

    [18]

    THOMAS J, KHANAM R, VOHORA D. Activation of indoleamine 2, 3-dioxygenase pathway by olanzapine augments antidepressant effects of venlafaxine in mice. Psychiatry Res, 2017, 258:444-448. DOI: 10.1016/j.psychres.2017.08.083

    [19]

    ZHONG Z, SANCHEZ-LOPEZ E, KARIN M. Autophagy, NLRP3 inflammasome and auto-inflammatory/immune diseases. Clin Exp Rheumatol, 2016, 34 (4 Suppl 98):12-16. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=3fd5a2cf7068d1e8f956900b74ac6c87

    [20]

    DU R H, TAN J, SUN X Y, et al. Fluoxetine inhibits NLRP3 inflammasome activation: implication in depression. Int J Neuropsychopharmacol, 2016, 19(9).pii: pyw037[2018-10-13].doi: 10.1093/ijnp/pyw037.print2016sep.

    [21]

    ALCOCER-GOMEZ E, CASAS-BARQUERO N, WILLIAMS M R, et al. Antidepressants induce autophagy dependent-NLRP3-inflammasome inhibition in major depressive disorder. Pharmacol Res, 2017, 121:114-121. DOI: 10.1016/j.phrs.2017.04.028

    [22]

    HEISEKE A, AGUIB Y, RIEMER C, et al. Lithium induces clearance of protease resistant prion protein in prion-infected cells by induction of autophagy. J Neurochem, 2009, 109(1):25-34. DOI: 10.1111/j.1471-4159.2009.05906.x

    [23]

    KWON D H, KIM L. pH-dependent regulation of SQSTM1/p62 during autophagy. Autophagy, 2019, 15(1):180-181. DOI: 10.1080/15548627.2018.1532264

    [24]

    SHEN L, YANG Y, OU T, et al. Dietary PUFAs attenuate NLRP3 inflammasome activation via enhancing macrophage autophagy. J Lipid Res, 2017, 58(9):1808-1821. DOI: 10.1194/jlr.M075879

    [25]

    DAI J, ZHANG X, LI L, et al. Autophagy inhibition contributes to ROS-producing NLRP3-dependent inflammasome activation and cytokine secretion in high glucose-induced macrophages. Cell Physiol Biochem, 2017, 43(1):247-256. DOI: 10.1159/000480367

    [26]

    CHIU Y H, HSU S H, HSU H W, et al. Human non-small cell lung cancer cells can be sensitized to camptothecin by modulating autophagy. Int J Oncol, 2018, 53(5):1967-1979.

图(7)  /  表(1)
计量
  • 文章访问数:  2498
  • HTML全文浏览量:  1068
  • PDF下载量:  42
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-02-18
  • 修回日期:  2019-05-28
  • 网络出版日期:  2021-03-16
  • 发布日期:  2019-09-19

目录

/

返回文章
返回