欢迎来到《四川大学学报(医学版)》 2025年4月6日 星期日

仿生姜黄素介导的声动力疗法抗黑色素瘤的实验研究

容逍, 向茜, 赵羿丞, 邱逦, 杜方雪

容逍, 向茜, 赵羿丞, 等. 仿生姜黄素介导的声动力疗法抗黑色素瘤的实验研究[J]. 四川大学学报(医学版), 2024, 55(5): 1159-1165. DOI: 10.12182/20240960108
引用本文: 容逍, 向茜, 赵羿丞, 等. 仿生姜黄素介导的声动力疗法抗黑色素瘤的实验研究[J]. 四川大学学报(医学版), 2024, 55(5): 1159-1165. DOI: 10.12182/20240960108
RONG Xiao, XIANG Xi, ZHAO Yicheng, et al. Experimental Study on Biomimetic Curcumin-Mediated Sonodynamic Therapy of Melanoma[J]. Journal of Sichuan University (Medical Sciences), 2024, 55(5): 1159-1165. DOI: 10.12182/20240960108
Citation: RONG Xiao, XIANG Xi, ZHAO Yicheng, et al. Experimental Study on Biomimetic Curcumin-Mediated Sonodynamic Therapy of Melanoma[J]. Journal of Sichuan University (Medical Sciences), 2024, 55(5): 1159-1165. DOI: 10.12182/20240960108

仿生姜黄素介导的声动力疗法抗黑色素瘤的实验研究

基金项目: 四川省科技厅项目(No. 2023NSFSC1723)资助
详细信息
    通讯作者:

    杜方雪: E-mail:1531442337@qq.com

Experimental Study on Biomimetic Curcumin-Mediated Sonodynamic Therapy of Melanoma

More Information
  • 摘要:
    目的 

    研究仿生姜黄素介导的声动力治疗在抗恶性黑色素瘤治疗中的作用,旨在为恶性黑色素瘤的治疗提供新的策略。

    方法 

    运用超声声振法包覆黑色素瘤细胞膜在姜黄素表面,形成仿生姜黄素;运用TEM观察仿生姜黄素的形貌;流式细胞术分析体外靶向性、细胞凋亡及胞内产活性氧(reactive oxygen species, ROS)的效果。体外实验分为对照组、US组、姜黄素组、仿生姜黄素组和仿生姜黄素+US组,每组3只小鼠;运用病理HE染色评估仿生姜黄素的体内安全性;运用HE染色、CD31染色、Ki67染色、TUNEL染色评估超声联合仿生姜黄素体内抗黑色素瘤治疗的效果。

    结果 

    仿生姜黄素形貌较均一,具有壳核结构;FlowJo流式细胞分析结果显示仿生姜黄素可以更好地被黑色素瘤细胞摄取;细胞凋亡率显示对照组(10.30±0.61)%,单独超声(US)组(10.41±3.13)%,姜黄素组(24.97±1.38)%,仿生姜黄素组(31.39±3.84)%,仿生姜黄素+US组(40.89±0.79)%,仿生姜黄素+US组细胞凋亡率高于其余各组(P<0.05);ROS流式细胞分析结果显示,与对照组相比,US组荧光强度值几乎无增加,其余组荧光强度均有不同程度的增加;仿生姜黄素组荧光强度〔(1.10±0.38)%〕与姜黄素组〔(0.73±0.26)%〕比较无明显差异(P>0.05),仿生姜黄素+US组荧光强度值〔(3.35±0.04)%〕高于其余各组(P<0.05)。HE染色显示各治疗组心、肝、脾、肺、肾组织形态未见明显异常,肿瘤HE染色显示仿生姜黄素+US组细胞形态变化最大,其次是仿生姜黄素组、姜黄素组,US组肿瘤细胞形态未见明显异常;CD31染色、Ki67染色、TUNEL染色分别显示仿生姜黄素+US组棕色区域面积最大、红色荧光数目最多、绿色荧光数目最多,其次是仿生姜黄素组、姜黄素组。

    结论 

    仿生姜黄素形貌均一,具有壳核结构,具有良好的靶向性;联合超声后,具有良好的体内外抗肿瘤治疗效果。

     

    Abstract:
    Objective 

    To study the role of curcumin-mediated sonodynamic therapy in the treatment of malignant melanoma, and to provide a new strategy for the treatment of malignant melanoma.

    Methods 

    The ultrasonic sound and vibration method was applied to coat curcumin with mouse melanoma cell membrane, thereby forming biomimetic curcumin. The morphology of biomimetic curcumin was observed by transmission electron microscope. Flow cytometry was used to analyze the effect of biomimetic curcumin in terms of in vitro targeting, apoptosis, and intracellular reactive oxygen species (ROS) production. The in vivo experiment was divided into control group, US group, turmeric group, imitation turmeric group, and imitation turmeric+US group, with 3 mice in each group. The in vivo safety of biomimetic curcumin was evaluated by HE staining. In addition, HE, CD31, Ki67, and TUNEL stainings were performed to evaluate the in vivo anti-melanoma therapeutic effect of ultrasound combined with biomimetic curcumin.

    Results 

    The biomimetic curcumin had a generally uniform morphology and possessed a core-shell structure. Flow cytometry analysis performed with FlowJo showed that the biomimetic curcumin could be effectively taken up by melanoma cells. The apoptosis rate was (10.30±0.61)% in the control group, (10.41±3.13)% in the ultrasound group, (24.97±1.38)% in the curcumin group, (31.39±3.84)% in the biomimetic curcumin group, and (40.89±0.79)% in the biomimetic curcumin and ultrasound combination group. The apoptosis rate in the biomimetic curcumin and ultrasound combination group was higher than those in the other groups (P<0.05). The results of ROS flow cytometry showed that, compared with the control group, the ultrasound group demonstrated almost no increase in the fluorescence intensity, while the other groups showed an increase in the fluorescence intensity to varying degrees. There was no significant difference in the fluorescence intensity between the biomimetic curcumin group ([1.10±0.38]%) and the curcumin group ([0.73±0.26]%) (P>0.05). The fluorescence intensity of the biomimetic curcumin and ultrasound combination group ([3.35±0.04]%) was higher than those of the other groups (P<0.05). HE staining showed no obvious abnormalities in the morphology of heart, liver, spleen, lung, and kidney tissues in any of the treatment groups. HE staining showed the most significant changes in cell morphology in the biomimetic curcumin and ultrasound combination group, followed by the biomimetic curcumin group and the curcumin group. No obvious abnormalities in tumor cell morphology were observed in the ultrasound group. According to the respective results of CD31 staining, Ki67 staining, and TUNEL staining, the biomimetic curcumin and ultrasound combination group had the largest brown area, the highest number of red fluorescence, and the highest number of green fluorescence, followed by the biomimetic curcumin group and the curcumin group.

    Conclusion 

    The biomimetic curcumin displays uniform morphology, a core-shell structure, and good targeting properties. When it is used in combination with ultrasound, biomimetic curcumin demonstrates a good anti-tumor therapeutic effect both in vivo and in vitro.

     

  • 图  1   姜黄素(A)与仿生姜黄素(B)的TEM图

    Figure  1.   TEM image of curcumin (A) and biomimetic curcumin (B)

    图  2   仿生姜黄素体外细胞实验结果

    Figure  2.   Results of biomimetic curcumin in vitro cell experiment

    Cur: curcumin; US: ultrasound. A, Flow cytometry diagram of the cell phagocytosis of biomimetic curcumin; B, statistical analysis of cell apoptosis rate of cells treated with biomimetic curcumin combined with ultrasound (n=3); C, statistical analysis of intracellular ROS production in cells treated with biomimetic curcumin combined with ultrasound (n=3); D, experimental results of cell apoptosis after treatment with biomimetic curcumin combined with ultrasound; E, experimental results of intracellular ROS production after treatment with biomimetic curcumin combined with ultrasound. ** P<0.01, *** P<0.001.

    图  3   各治疗组脏器的 HE 染色图

    Figure  3.   The HE staining of organ tissues given different treatments

    The abbreviations are explained in the note to Fig 2.

    图  4   各治疗组肿瘤组织的病理染色

    Figure  4.   Pathological staining of the tumor tissues of different treatment groups

    The abbreviations are explained in the note to Fig 2.

  • [1]

    VISNJIC A, KOVACEVIC P, VELICKOV A, et al. Head and neck cutaneous melanoma: 5-year survival analysis in a Serbian university center. World J Surg Oncol, 2020, 18(1): 312. doi: 10.1186/s12957-020-02091-4.

    [2]

    LIM Y, LEE J, LEE D Y. Is the survival rate for acral melanoma actually worse than other cutaneous melanomas? J Dermatol, 2020, 47(3): 251–256. doi: 10.1111/1346-8138.15201.

    [3]

    CONIC R Z, CABRERA C I, KHORANA A A, et al. Determination of the impact of melanoma surgical timing on survival using the National Cancer Database. J Am Acad Dermatol, 2018, 78(1): 40–46.e7. doi: 10.1016/j.jaad.2017.08.039.

    [4]

    COIT D G, THOMPSON J A, ALBERTINI M R, et al. Cutaneous Melanoma, Version 2.2019, NCCN Clinical Practice Guidelines in Oncology. J Natl Compr Canc Netw, 2019, 17(4): 367–402. doi: 10.6004/jnccn.2019.0018.

    [5]

    CHAMPIAT S, DERCLE L, AMMARI S, et al. Hyperprogressive disease is a new pattern of progression in cancer patients treated by anti-PD-1/PD-L1. Clin Cancer Res, 2017, 23(8): 1920–1928. doi: 10.1158/1078-0432.CCR-16-1741.

    [6]

    XU M M, ZHOU L Q, ZHENG L, et al. Sonodynamic therapy-derived multimodal synergistic cancer therapy. Cancer Lett, 2021, 497: 229–242. doi: 10.1016/j.canlet.2020.10.037.

    [7]

    OUYANG J, TANG Z M, FAROKHZAD N, et al. Ultrasound mediated therapy: recent progress and challenges in nanoscience. Nano Today, 2020, 35: 100949. doi: 10.1016/j.nantod.2020.100949.

    [8]

    HE M Y, WANG M Y, XU T, et al. Reactive oxygen species-powered cancer immunotherapy: current status and challenges. J Control Release, 2023, 356: 623–648. doi: 10.1016/j.jconrel.2023.02.040.

    [9]

    SON S, KIM J H, WANG X W, et al. Multifunctional sonosensitizers in sonodynamic cancer therapy. Chem Soc Rev, 2020, 49(11): 3244–3261. doi: 10.1039/c9cs00648f.

    [10]

    XING X J, ZHAO S J, XU T, et al. Advances and perspectives in organic sonosensitizers for sonodynamic therapy. Coord Chem Rev, 2021, 445: 214087. doi: 10.1016/j.ccr.2021.214087.

    [11]

    LIN X H, SONG J B, CHEN X Y, et al. Ultrasound-activated sensitizers and applications. Angew Chem Int Ed Engl, 2020, 59(34): 14212–14233. doi: 10.1002/anie.201906823.

    [12]

    ALAGAWANY M, FARAG M R, ABDELNOUR S A, et al. Curcumin and its different forms: a review on fish nutrition. Aquaculture, 2021, 532: 736030. doi: 10.1016/j.aquaculture.2020.736030.

    [13]

    SHANMUGAM M K, RANE G, KANCHI M M, et al. The multifaceted role of curcumin in cancer prevention and treatment. Molecules, 2015, 20(2): 2728–2769. doi: 10.3390/molecules20022728.

    [14]

    PATRA S, PRADHAN B, NAYAK R, et al. Chemotherapeutic efficacy of curcumin and resveratrol against cancer: chemoprevention, chemoprotection, drug synergism and clinical pharmacokinetics. Semin Cancer Biol, 2021, 73: 310–320. doi: 10.1016/j.semcancer.2020.10.010.

    [15]

    SOWA-KASPRZAK K, JÓZKOWIAK M, OLENDER D, et al. Curcumin-Triterpene Type Hybrid as Effective Sonosensitizers for Sonodynamic Therapy in Oral Squamous Cell Carcinoma. Pharmaceutics, 2023, 5(7): 2008. doi: 10.3390/pharmaceutics15072008.

    [16]

    TABANELLI R, BROGI S, CALDERONE V. Improving curcumin bioavailability: current strategies and future perspectives. Pharmaceutics, 2021, 13(10): 1715. doi: 10.3390/pharmaceutics13101715.

    [17]

    YANG D M, TANG Y J, ZHU B H, et al. Engineering cell membrane-cloaked catalysts as multifaceted artificial peroxisomes for biomedical applications. Adv Sci (Weinh), 2023, 10(17): e2206181. doi: 10.1002/advs.202206181.

    [18]

    XU K, ZOU Y N, LIN C C, et al. Cascade catalysis nanozyme for interfacial functionalization in combating implant infections associated with diabetes via sonodynamic therapy and adaptive immune activation. Biomaterials, 2024, 311: 122649. doi: 10.1016/j.biomaterials.2024.122649.

    [19]

    HAN Y, ZHANG H, ZHAO H T, et al. Nanoparticle encapsulation using self-assembly abietic acid to improve oral bioavailability of curcumin. Food Chem, 2024, 436: 137676. doi: 10.1016/j.foodchem.2023.137676.

    [20]

    OMIDIAN H, WILSON R L, CHOWDHURY S D. Enhancing therapeutic efficacy of curcumin: advances in delivery systems and clinical applications. Gels, 2023, 9(8): 596. doi: 10.3390/gels9080596.

    [21]

    XIONG J, WU M, CHEN J, et al. Cancer-erythrocyte hybrid membrane-camouflaged magnetic nanoparticles with enhanced photothermal-immunotherapy for ovarian cancer. ACS Nano, 2021, 15(12): 19756–19770. doi: 10.1021/acsnano.1c07180.

    [22]

    RAO L, BU L L, CAI B, et al. Cancer cell membrane-coated upconversion nanoprobes for highly specific tumor imaging. Adv Mater, 2016, 28(18): 3460–3466. doi: 10.1002/adma.201506086.

    [23]

    YUAN H M, ZHANG L Y, MA T, et al. Spiky cascade biocatalysts as peroxisome-mimics for ultrasound-augmented tumor ablation. ACS Appl Mater Interfaces, 2022, 14(14): 15970–15981. doi: 10.1021/acsami.1c25072.

    [24]

    AN X Q, YU W F, LIU J B, et al. Oxidative cell death in cancer: mechanisms and therapeutic opportunities. Cell Death Dis, 2024, 15(8): 556. doi: 10.1038/s41419-024-06939-5.

    [25]

    TORRES-CABALA C, LI-NING-TAPIA E, HWU W J. Pathology-based biomarkers useful for clinical decisions in melanoma. Arch Med Res, 2020, 51(8): 827–838. doi: 10.1016/j.arcmed.2020.09.008.

    [26]

    SIMON L, ZINI A, DYACHENKO A, et al. A systematic review and meta-analysis to determine the effect of sperm DNA damage on in vitro fertilization and intracytoplasmic sperm injection outcome. Asian J Androl, 2017, 19(1): 80–90. doi: 10.4103/1008-682X.182822.

  • 期刊类型引用(12)

    1. 鲜清照,陈斯斯,王英,李欣,孙鸿燕. 中国男男性行为者焦虑检出率的Meta分析. 中国艾滋病性病. 2024(08): 886-892 . 百度学术
    2. 杨昊,官雨佳,王颖,彭文涛,朱惠,罗万英. 成都市男男性行为HIV阳性感染者拒绝接受抗病毒药物治疗的质性研究. 中国皮肤性病学杂志. 2023(07): 808-814 . 百度学术
    3. 邓力,魏泽北,朱华雪,朱晓阳. 高校学生男男性行为者负面情绪及影响因素分析. 中国学校卫生. 2022(03): 363-366 . 百度学术
    4. 李潇,韩晶,刘宇,吴诗诗,张瑞婷,王克荣,史君洁. 中青年HIV感染男男性行为者抑郁现状及其影响因素的研究进展. 中国艾滋病性病. 2022(04): 494-497 . 百度学术
    5. 戴振威,司明玉,吴奕锦,陈旭,付佳琪,黄依漫,王浩,肖伟军,于飞,米国栋,苏小游. HIV相关知识及预期污名化对男男性行为者抑郁的影响——基于潜在类别分析. 中国全科医学. 2022(30): 3803-3809 . 百度学术
    6. 陈颂歌,刘娜,张素敏. 老年心房颤动射频消融术后复发患者社会支持状况及其影响因素. 青岛医药卫生. 2021(04): 241-245 . 百度学术
    7. 刘小平. 51例HIV感染者/AIDS患者社会支持与焦虑、抑郁的关系——心理弹性的中介作用. 内江师范学院学报. 2021(08): 1-6 . 百度学术
    8. 付楠楠,于茂河,柳忠泉,刘轶,高磊,汪耿夫,张欣. 天津市HIV阳性MSM生活状况及社会支持情况定性访谈分析. 职业卫生与病伤. 2020(02): 88-91 . 百度学术
    9. 孙群露,安霞,饶兆伟,涂玉山,饶展宏,毛美玲,李彤,李晓雯,林爱华. 深圳市HIV阳性男男性行为者的社会网络和社会支持现况研究. 实用预防医学. 2020(09): 1064-1068 . 百度学术
    10. 谢天,韩佳禹,杨淑娟,余彬,黄玉玲,董佩杰,杨诗凡. 成都市郫都区50岁及以上中老年艾滋病感染者心理健康状况及其影响因素分析. 预防医学情报杂志. 2020(12): 1543-1550+1555 . 百度学术
    11. 曹鸣菲,雷德财,宋晓玉,吴立春. 四川省肿瘤医院2005~2018年肿瘤住院患者HIV抗体筛查结果分析. 医学信息. 2019(07): 82-85 . 百度学术
    12. 安霞,钱兵,饶兆伟,涂玉山,饶展宏,毛美玲,孙群露,林爱华. 深圳市宝安区110例HIV阳性男男性行为者的性行为特征和社会支持情况. 中国艾滋病性病. 2019(10): 1047-1051 . 百度学术

    其他类型引用(5)

© 2024《四川大学学报(医学版)》编辑部
cc

开放获取 本文遵循知识共享署名—非商业性使用4.0国际许可协议(CC BY-NC 4.0),允许第三方对本刊发表的论文自由共享(即在任何媒介以任何形式复制、发行原文)、演绎(即修改、转换或以原文为基础进行创作),必须给出适当的署名,提供指向本文许可协议的链接,同时标明是否对原文作了修改;不得将本文用于商业目的。CC BY-NC 4.0许可协议详情请访问 https://creativecommons.org/licenses/by-nc/4.0

图(4)
计量
  • 文章访问数:  141
  • HTML全文浏览量:  27
  • PDF下载量:  16
  • 被引次数: 17
出版历程
  • 收稿日期:  2024-03-13
  • 修回日期:  2024-08-23
  • 发布日期:  2024-09-19
  • 刊出日期:  2024-09-19

目录

    /

    返回文章
    返回