欢迎来到《四川大学学报(医学版)》 2025年5月10日 星期六

α-香附酮通过调控TLR4/NF-κB信号通路拮抗肠黏膜炎症反应缓解小鼠克罗恩病样结肠炎

张诺, 张敏, 宋雪, 张小凤, 耿志军, 王炼, 葛思堂, 李静, 左芦根, 胡建国

张诺, 张敏, 宋雪, 等. α-香附酮通过调控TLR4/NF-κB信号通路拮抗肠黏膜炎症反应缓解小鼠克罗恩病样结肠炎[J]. 四川大学学报(医学版), 2024, 55(5): 1166-1174. DOI: 10.12182/20240960104
引用本文: 张诺, 张敏, 宋雪, 等. α-香附酮通过调控TLR4/NF-κB信号通路拮抗肠黏膜炎症反应缓解小鼠克罗恩病样结肠炎[J]. 四川大学学报(医学版), 2024, 55(5): 1166-1174. DOI: 10.12182/20240960104
ZHANG Nuo, ZHANG Min, SONG Xue, et al. α-Cyperone Antagonizes Intestinal Mucosal Inflammatory Response Through Modulation of TLR4/NF-κB Signaling Pathway to Alleviate Crohn's Disease-Like Colitis in Mice[J]. Journal of Sichuan University (Medical Sciences), 2024, 55(5): 1166-1174. DOI: 10.12182/20240960104
Citation: ZHANG Nuo, ZHANG Min, SONG Xue, et al. α-Cyperone Antagonizes Intestinal Mucosal Inflammatory Response Through Modulation of TLR4/NF-κB Signaling Pathway to Alleviate Crohn's Disease-Like Colitis in Mice[J]. Journal of Sichuan University (Medical Sciences), 2024, 55(5): 1166-1174. DOI: 10.12182/20240960104

α-香附酮通过调控TLR4/NF-κB信号通路拮抗肠黏膜炎症反应缓解小鼠克罗恩病样结肠炎

基金项目: 安徽省高校优秀科研创新团队项目(No. 2023AH010067)、安徽省高等学校重点科学研究项目(自然科学类)(No. 2023AH040289)、蚌埠医学院第一附属医院高水平科技创新团队(No. BYYFY2022TD002)和蚌埠医学院研究生科研创新计划项目(No. Byycx23068)资助
详细信息
    通讯作者:

    胡建国: E-mail:jghu9200@bbmc.edu.cn

α-Cyperone Antagonizes Intestinal Mucosal Inflammatory Response Through Modulation of TLR4/NF-κB Signaling Pathway to Alleviate Crohn's Disease-Like Colitis in Mice

More Information
  • 摘要:
    目的 

    探讨α-香附酮(α-cyperone, CYP)对2,4,6-三硝基苯磺酸(2, 4, 6-trinitrobenzene sulfonic acid, TNBS)诱导的小鼠克罗恩病(Crohn's disease, CD)样结肠炎的作用效果及可能机制。

    方法 

    将小鼠随机平均分为野生(wild type, WT)组、TNBS组、CYP组和5-氨基水杨酸(5-ASA)组,每组10只。检测各组小鼠肠炎症状、肠屏障功能和结构及结肠中炎症因子〔白细胞介素(interleukin, IL)-6、肿瘤坏死因子-α(tumor necrosis factor-α, TNF-α)、IL-1β及γ-干扰素(gamma-interferon, IFN-γ)〕表达水平。构建脂多糖(lipopolysaccharide, LPS)诱导Caco2细胞炎症模型,分为Control组、LPS组及LPS+CYP组,检测各组细胞紧密连接蛋白及炎症因子表达水平。采用基因本体(Gene Ontology, GO)功能富集分析预测CYP可能的作用途径与潜在的分子机制,并进行体内外验证。

    结果 

    体内研究中,与TNBS组相比,CYP组和5-ASA组小鼠体质量和结肠长度增加,而疾病活动度评分和组织学炎症评分降低(P<0.05);异硫氰酸荧光素-葡聚糖水平、细菌移位率(肝脏、脾脏和肠系膜淋巴结)降低,而跨上皮电阻(transepithelial electric resistance, TEER)值、闭锁小带蛋白-1(zonula occluden protein-1, ZO-1)及闭合蛋白-1(claudin-1)表达增加(P<0.05);炎症因子表达降低(P<0.05)。体外研究中,与LPS组相比,LPS+CYP组中Caco2细胞的TEER值、ZO-1和claudin-1表达增加(P<0.05);炎症因子表达降低(P<0.05)。富集分析发现CYP与炎症应答相关(P<0.001)。Western blot结果表明,CYP可显著降低体内外Toll样受体4(toll-like receptor 4, TLR4)/核因子-κB (nuclear factor-κB, NF-κB)信号通路中关键蛋白的表达(P<0.05)。

    结论 

    CYP可能通过调控TLR4/NF-κB信号通路的表达,拮抗肠黏膜炎症反应来保护肠屏障,进而缓解TNBS诱导的小鼠CD样结肠炎。

     

    Abstract:
    Objective 

    To investigate the effect and potential mechanisms of α-cyperone (CYP) on Crohn's disease (CD) -like colitis induced by 2, 4, 6-trinitrobenzene sulfonic acid (TNBS) in mice.

    Methods 

    The mice were randomly and evenly divided into wild type (WT), TNBS, CYP and 5-aminosalicylic acid (5-ASA) groups, with 10 mice in each group. The symptoms of enteritis, the function and structure of the intestinal barrier, and the expression levels of inflammatory factors, including interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and gamma-interferon (IFN-γ), in the colon were assessed. The lipopolysaccharide (LPS)-induced inflammation model of Caco2 cells was constructed and the cells were divided into Control, LPS and LPS+CYP groups. The expression levels of tight junction protein and inflammatory factors in each group were assessed. Gene Ontology (GO) functional enrichment analysis was conducted to predict the possible pathways of action and potential molecular mechanisms of CYP, and to verify them in vivo and in vitro.

    Results 

    In the in vivo study, compared with those of the TNBS group, the body mass and colon length of mice in the CYP group and the 5-ASA group were significantly increased, while the disease activity scores and histological inflammation scores were significantly decreased (P<0.05). The level of lucifcein-glucan isothiocyanate and the bacterial translocation rate (in the liver, the spleen, and mesenteric lymph nodes) were significantly decreased, while the transepithelial electric resistance (TEER) value and the expression levels of zonula occluden protein-1 (ZO-1), and claudin-1 were significantly increased (P<0.05). The expression of inflammatory factors was significantly decreased (P<0.05). In the in vitro study, compared with those of the LPS group, the TEER value and the expression of ZO-1 and claudin-1 in the Caco2 cells in the LPS+CYP group were significantly increased (P<0.05). The expression of inflammatory factors was significantly decreased (P<0.05). Enrichment analysis showed that CYP was correlated with inflammatory response (P<0.001). Western blot results showed that CYP could significantly reduce the expression of key proteins in toll-like receptor 4 (TLR4)/nuclear factor-κB (NF-κB) signaling pathway in vivo and in vitro (P<0.05).

    Conclusion 

    CYP may protect the intestinal barrier by antagonizing the inflammatory response of the intestinal mucosa through regulating the expression of the TLR4/NF-κB signaling pathway, thereby alleviating TNBS-induced CD-like colitis in mice.

     

  • 克罗恩病(Crohn's disease, CD)是一种炎症性肠病(inflammatory bowel disease, IBD),具有慢性、复发性的疾病特征[1-2]。该病难以治愈且病情严重时可致残,我国发病率逐年攀升,严重危害我国居民的生命健康[3-4]。CD的病因和发病机制不明,由环境、微生物、遗传、免疫、细胞和分子等多种因素相互作用导致[5]。同时越来越多的证据表明,CD患者肠黏膜层发生的炎症反应会导致肠屏障损伤,加重肠道炎症,因此如何拮抗肠黏膜炎症反应和改善肠屏障功能已成为CD临床治疗的重要方向[6]。CD的临床治疗以药物干预为主,但目前CD的治疗药物,如5-氨基水杨酸(5-aminosalicylic acid, 5-ASA)、肿瘤坏死因子-α(tumor necrosis factor-α, TNF-α)单抗等,多具有药物抵抗、不耐受和毒副作用大等缺陷,限制了其临床应用[7]。因此,寻求新的且具有更理想疗效的抗肠炎药物是治疗CD的迫切目标。

    α-香附酮(α-cyperone, CYP)是一种从香附根茎中提取的萜类化合物,具有抗炎作用[8-9]。研究表明,CYP可通过抑制小鼠炎症因子的产生发挥神经保护作用,还可改善帕金森病模型以及脊髓损伤模型的炎症反应[10-12]。但现有文献中尚无有关CYP对CD作用效果的报道,因此本研究的目标是确定CYP是否对2,4,6-三硝基苯磺酸(2, 4, 6-trinitrobenzene sulfonic acid, TNBS)诱导的小鼠CD样结肠炎具有保护作用,并就CYP可能具有的生物学作用及其机制进行深入研究,旨在为CYP治疗CD样结肠炎提供实验依据。

    本实验中雄性野生型小鼠〔C57BL/6,(20±2)g,6~8周龄〕饲养于无特定病原体(specific pathogen free, SPF)环境,共40只,购自江苏集萃药康生物科技股份有限公司。所有动物实验方案均经蚌埠医科大学第一附属医院伦理委员会批准(伦动科批字[2021]第283号)。

    本实验所用结直肠癌细胞系Caco2细胞购自中国科学院细胞库。

    CYP(粉剂,HPLC≥98%,批号:B21965)购自上海源叶生物科技有限公司;TNBS、脂多糖(lipopolysaccharides, LPS)、牛血清白蛋白(bovine serum albumin, BSA)以及异硫氰酸荧光素-葡聚糖(fluorescein isothiocyanate-dextran, FITC-dextran)购自美国Sigma公司;蛋白酶/磷酸酶抑制剂购自武汉赛维尔生物科技有限公司;闭锁小带蛋白-1(zonula occluden protein-1, ZO-1)、闭合蛋白-1(claudin-1)及β-actin购自英国Abcam公司;苏木精-伊红(hematoxylin-eosin, HE)染色试剂盒购自北京索莱宝科技有限公司;RIPA裂解液购自上海碧云天生物科技有限公司;白细胞介素(interleukin, IL)-6、TNF-α、IL-1β和γ-干扰素(gamma-interferon, IFN-γ)ELISA试剂盒购自武汉博士德生物工程有限公司;逆转录和qRT-PCR试剂盒购自TaKaRa公司;Toll样受体4(toll-like receptor 4, TLR4)、髓样分化因子88(myeloid differentiation factor 88, MyD88)、p-p65及p65抗体购自武汉三鹰生物技术有限公司。

    将40只野生型(wild type, WT) C57BL/6小鼠随机分为4组(每组10只):正常对照组(WT组)、模型组(TNBS组)、CYP治疗组(CYP组)和阳性对照组(5-ASA组)。CYP溶解于DMSO(0.1%)中,5-ASA溶解于生理盐水中。需要进行TNBS造模的实验组小鼠(TNBS组、CYP组和5-ASA组)[13-14]:首先采用40 mg/kg戊巴比妥钠(0.7%)以腹腔注射的方式将小鼠麻醉,再将其摆放至合适状态(头低脚高位),然后对小鼠进行灌肠处理(0.1 mL2.5%TNBS乙醇溶液),4 min内保持倒立体位。小鼠接受造模当天,WT组和TNBS组小鼠给予等量生理盐水(0.2 mL/d,连续7 d,腹腔注射),CYP组小鼠给予CYP治疗〔10 mg/(kg·d),0.2 mL/d,连续7 d,腹腔注射〕,5-ASA组小鼠则给予5-ASA治疗〔50 mg/(kg·d),0.2 mL/d,连续7 d,灌胃〕。实验结束后采用颈椎脱臼法处死小鼠,取检结肠并剖开(沿纵轴)分为两份,分别保存于-80 ℃冰箱及福尔马林中。取检后对整段结肠进行拍照及长度测量。

    在TNBS造模期间,观察记录小鼠的体质量变化、粪便情况、状态等。本研究采用肠炎疾病活动度评分(disease activity index, DAI)评估小鼠第7天结肠炎的严重程度[13]。评分按6分制(0~5分)计算,症状评分累计之和为每只小鼠的DAI得分,分值越高代表肠炎症状越重。

    固定好的小鼠结肠组织先脱水、石蜡包埋、切片及HE染色,再进行组织形态学观察。根据组织学评分确定小鼠肠道炎症程度,分数分为5个等级(0~4分)[13]。采取双盲法对显微镜下任意选取的3个不同视野进行评分,最后取各视野的炎症评分均数作为该张切片的最终分值,分值越高代表炎症越重。

    造模结束后各组小鼠禁食4 h,然后给予FITC-dextran(600 mg/kg,灌胃)。4 h后处死小鼠(颈椎脱臼法),并抽取心脏血液(1 mL)。在25 ℃的环境温度下,静置1 h后离心分离血清,最后检测血清中FITC-dextran水平(荧光测定法)。

    收集小鼠结肠组织,首先将其管腔内容物冲洗干净,再浸泡于pH为7.33~7.37的缓冲液中。然后分割肠管(2.8 mm×11 mm)并将其放入矩形滑块中进行检测(Ussing chamber系统)。血清侧加入葡萄糖(10 mmol/L),系统两腔则加入克雷布斯缓冲液,其中葡萄糖作为能量来源。最后为维持渗透压平衡,管腔侧还加入甘露醇(10 mmol/L)。跨上皮电阻(transepithelial electric resistance, TEER)值在组织保持平衡后测量。

    首先将小鼠脾脏、肝脏和肠系膜淋巴结(mesenteric lymph node, MLN)进行无菌分离,再将各组织样本称重,分别取0.1 g(每个脏器取3份)置于0.9 mL无菌生理盐水中,制成匀浆。然后分别取100 μL组织匀浆涂布在培养基上,37 ℃培养24 h。当菌落形成单位超过102个/g组织时,为阳性结果。各组各脏器的阳性样本数与总样本数的百分比即为细菌移位率。

    石蜡切片经烤片、脱蜡水化、抗原修复、5%BSA封闭后,再滴加兔单克隆抗体ZO-1(1∶100)和claudin-1(1∶1000)稀释液,并于4 ℃冰箱过夜。第二天,切片再用相应的具有荧光标记的二抗(FITC)室温孵育1 h。细胞核用DAPI复染。最后利用荧光显微镜进行分析。

    Caco2细胞接种于含1%双抗(青霉素-链霉素)、10%胎牛血清的RPMI1640完全培养基,置于培养箱(37 ℃、体积分数5%CO2)中,换液(隔天一次),待细胞90%融合后,进行消化(0.25%胰酶)并传代。细胞悬液密度调整为7×107 L-1,以每孔100 μL的体积接种至96孔板中,孵育24 h。设正常对照组(control组)、模型组(LPS组)及CYP干预组(LPS+CYP组)。Control组为正常培养的Caco2细胞;LPS组Caco2细胞经LPS(1 mg/mL)干预24 h;LPS+CYP组Caco2经LPS(1 mg/mL)和CYP (10 μmol/L)同时干预24 h。镜下观察细胞状态,当细胞密度达80%时,收集细胞以用于后续检测。

    首先将分组处理后的Caco2细胞(Control组、LPS组、LPS+CYP组)接种于孔径为3 μm的transwell小室中,并在其中插入24孔细胞培养板。在上室和下室中均加入完全培养基,每隔一天更换一次培养基,直至21 d。在形成完整的单层Caco2细胞后,使用细胞电阻仪测量TEER值。记录数值,连续测量3个点位的值,最后取其平均值。

    首先制备细胞爬片,再进行分组处理(Control组、LPS组、LPS+CYP组),然后加入400 μL的0.2%TritonX-100进行通透,20 min后用PBS洗涤。再利用5%的山羊血清封闭30 min,弃去封闭液,滴加ZO-1(1∶100)和claudin-1(1∶1000)抗体,4 ℃冰箱过夜。恢复室温后使用PBS洗涤,再用相应荧光二抗(FITC)室温孵育1 h。PBS洗涤后,在载玻片上滴加DAPI,盖上细胞爬片。最后利用荧光显微镜进行拍照观察。

    取小鼠结肠黏膜组织和Caco2细胞进行Western blot实验。首先进行总蛋白的提取及定量,再经煮沸变性、电泳及转移蛋白至膜上后进行封闭。将膜与ZO-1(1∶1000)、claudin-1(1∶2000)、TLR4(1∶4000)、MyD88(1∶5000)、p-p65(1∶5000)、p65(1∶3000)和β-actin(1∶1000)抗体于4 ℃冰箱孵育过夜,然后与二抗在室温下孵育2 h。最后,将膜洗涤3次后,滴加ECL显影液以收集照片。本实验以β-actin为内参,并利用Image-J软件定量分析各组目标蛋白的相对表达量,以目标蛋白与内参蛋白光密度(optical density, OD)值的比值作为目标蛋白的相对表达量。

    本研究利用ELISA试剂盒来分析小鼠结肠黏膜组织和Caco2细胞上清液中炎症因子的表达水平。将各组小鼠结肠黏膜组织匀浆和Caco2细胞上清液离心30 min(1000×g),并按照说明书检测各炎症因子的表达水平。最后使用酶标仪在450 nm处测量OD值。

    首先使用RNA提取试剂盒提取小鼠结肠黏膜组织和Caco2细胞的总RNA,然后进行反转录,最后于qRT-PCR仪上进行扩增。扩增程序为:95 ℃变性30 s,55 ℃退火60 s,72 ℃延伸20 s,重复40个循环。所有实验独立重复3次以确保数据的可靠性。引物见表1。目的基因相对表达量以β-actin为内参计算,并采用2-ΔΔCt法相对定量。

    表  1  引物序列
    Table  1.  Primer sequences
    Gene name Primer sequences
    IL-6 (F) 5′-CTGCAAGAGACTTCCATCCAG-3′
    IL-6 (R) 5′-AGTGGTATAGACAGGTCTGTTGG-3′
    TNF-α (F) 5′-CCTGTAGCCCACGTCGTAG-3′
    TNF-α (R) 5′-GGGAGTAGACAAGGTACAACCC-3′
    IL-1β (F) 5′-GAAATGCCACCTTTTGACAGTG-3′
    IL-1β (R) 5′-TGGATGCTCTCATCAGGACAG-3′
    IFN-γ (F) 5′-GCCACGGCACAGTCATTGA-3′
    IFN-γ (R) 5′-TGCTGATGGCCTGATTGTCTT-3′
    β-actin (F) 5′-GTGACGTTGACATCCGTAAAGA-3′
    β-actin (R) 5′-GCCGGACTCATCGTACTCC-3′
    下载: 导出CSV 
    | 显示表格

    收集CYP可能的潜在作用靶点(Pharmmapper、SuperPred和Swiss Target Prediction数据库),并以“Crohn's disease”作为关键词,检索CD有关疾病靶点(DrugBank、TTD及DisGeNet数据库)。

    将各数据库检索到的疾病靶点(1352个)与药物靶点(198个)全部导入Venny 2.1在线工具,取两者交集,共得到CYP治疗CD的99个潜在靶点。然后在限定物种为人类(Homo sapiens)的前提下,通过David数据库对交集靶点进行基因本体(Gene Ontology, GO)功能富集分析。依据P值可视化处理排名靠前15的结果。

    使用SPSS 26. 0软件进行数据分析,本研究所得数据表示为$\bar x \pm s $。根据变量的类型(参数或非参数),两组间比较应用t检验或Mann-Whitney U检验;单因素方差分析应用于多组间比较,再利用Tukey多重比较法进行两组间比较。P<0.05为差异有统计学意义。

    相比于TNBS组,CYP组小鼠体质量降低幅度、DAI评分和结肠缩短程度均降低(P<0.05,图1A1D)。基于HE染色结果表明,CYP治疗同样降低了TNBS诱导小鼠的结肠组织学炎症评分(P<0.05,图1E1F)。本研究采用5-ASA作为阳性对照以评估CYP的治疗效果。实验结果发现,CYP与5-ASA具有相似的疗效(P>0.05)。

    图  1  CYP治疗对TNBS诱导小鼠肠炎症状的影响
    Figure  1.  Effect of CYP treatment on TNBS-induced colitis symptoms in mice
    A, Changes in body mass; B, DAI score of the mice; C, the colon length of the mice; D, representative picture of the colon of the mice; E, the inflammation score of the colon tissue of the mice; F, HE staining. * P<0.05, vs. WT group; # P<0.05, vs. TNBS group. n=10.

    肠道通透性实验证明,与TNBS组小鼠相比,CYP或5-ASA治疗降低了外周血中FITC-dextran水平,并使结肠黏膜组织TEER值增加(P<0.05,图2A2B)。同时,与TNBS组小鼠相比,CYP或5-ASA治疗降低了细菌移位率(肝脏、脾脏和MLN)(P<0.05,图2C2E)。此外,通过免疫荧光染色分析,TNBS组小鼠肠黏膜中ZO-1和claudin-1表达水平低于WT组,经CYP或5-ASA治疗后显著升高(图2F)。同时采用Western blot检测,结果具有相同趋势(图2G)。

    图  2  CYP治疗对TNBS诱导小鼠肠屏障功能及结构的影响
    Figure  2.  Effect of CYP treatment on TNBS-induced intestinal barrier function and structure in mice
    A, Serum levels of FITC-dextran; B, TEER values of colon; C-E, the proportion of intestinal bacteria translocation; F, immunofluorescence staining; G, Western blot. * P<0.05, vs. WT group; # P<0.05, vs, TNBS group. n=10.

    GO富集分析表明,炎症应答可能是CYP对CD发挥作用的关键(图3A)。ELISA实验证明,CYP组或5-ASA组小鼠结肠黏膜中炎症因子(IL-6、TNF-α、IL-1β和IFN-γ)水平低于TNBS组,差异有统计学意义(P<0.05,图3B3E)。此外,qRT-PCR实验结果与上述结果保持一致(图3F3I)。

    图  3  CYP治疗对TNBS诱导小鼠肠黏膜组织中炎症反应的影响
    Figure  3.  Effect of CYP treatment on TNBS-induced inflammatory responses in mouse intestinal mucosal tissue
    A, GO functional enrichment analysis of intersection targets of CYP and CD: inflammatory response (P<0.001); B-E, ELISA; F-I, qRT-PCR. * P<0.05, vs. WT group; # P<0.05, vs. TNBS group. n=10.

    TEER实验结果显示,LPS+CYP组Caco2细胞的TEER值高于LPS组(P<0.05,图4A)。此外,免疫荧光染色结果显示,LPS+CYP组Caco2细胞中ZO-1和claudin-1蛋白的表达水平高于LPS组(图4B)。类似的结果被Western blot验证(图4C)。

    图  4  CYP干预对LPS刺激的Caco2细胞屏障功能及结构的影响
    Figure  4.  Effects of CYP intervention on barrier function and structure of Caco2 cells stimulated by LPS
    A, TEER value; B, immunofluorescence staining; C, Western blot. * P<0.05, vs. control group; # P<0.05, vs. LPS group. n=3.

    ELISA实验结果证明,LPS+CYP组Caco2细胞中炎症因子(IL-6、TNF-α、IL-1β和IFN-γ)水平低于LPS组(P<0.05,图5A5D)。同时,qRT-PCR结果与其一致(图5E5H)。

    图  5  CYP干预对LPS刺激的Caco2细胞炎症反应的影响
    Figure  5.  Effect of CYP intervention on the inflammatory response of LPS-stimulated Caco2 cells
    A-D, ELISA; E-H, qRT-PCR. * P<0.05, vs. control group; # P<0.05, vs. LPS group. n=3.

    体内研究中,Western blot结果表明,CYP组和5-ASA组小鼠结肠中TLR4、MyD88及p-p65蛋白的水平低于TNBS组,差异有统计学意义(P<0.05,图6A)。进一步采用Caco2细胞模型验证,结果证实LPS+CYP组细胞中TLR4、MyD88及p-p65蛋白的水平均低于LPS组,差异有统计学意义(P<0.05,图6B)。

    图  6  CYP干预对体内和体外TLR4/NF-κB信号通路的影响(Western blot)
    Figure  6.  Effect of CYP intervention on TLR4/NF-κB signaling pathway in vivo and in vitro (Western blot)
    A, Colon tissues (* P<0.05, vs. WT group; # P<0.05, vs. TNBS group. n=10); B, Caco2 cells (* P<0.05, vs. control group; # P<0.05, vs. LPS group. n=3).

    本研究证明CYP能够改善TNBS诱导的小鼠CD样结肠炎。主要发现如下:①CYP治疗可改善TNBS诱导小鼠的肠道炎症;②CYP可通过拮抗肠黏膜炎症反应保护肠屏障功能;③CYP改善小鼠CD样结肠炎的作用可能是通过调控TLR4/NF-κB信号通路的表达。

    本研究中的CD动物模型为TNBS诱导的小鼠,其肠道病理组织学改变及炎性表征与人类CD相似,并且模型稳定[15]。研究结果显示,CYP缓解了TNBS小鼠的CD样结肠炎表征,表现为体质量和结肠长度的增加以及DAI评分和组织学炎症评分的降低,发挥了与5-ASA相似的治疗作用。已知5-ASA是CD临床治疗的常用药物,具有显著抗炎疗效[16]。本研究结果显示CYP与5-ASA有类似的结肠炎治疗作用。既往文献报道,CYP可缓解神经细胞炎症反应,并可在多种疾病中造成炎症因子的衰减,如脊髓损伤、骨关节炎等[10-11, 17]。在本研究中,CYP通过抗炎作用缓解了CD模型的肠道炎症反应,从而将其应用范围拓展到了更广泛的疾病领域。

    CD患者存在肠屏障功能障碍,常表现为肠道通透性增加,进而诱发肠道炎症反应[18-19]。本研究结果发现CYP体内外均逆转了肠道通透性的增加。紧密连接蛋白是细胞内连接复合物,其结构涉及跨膜蛋白和连接黏附分子,如ZO-1和claudin-1蛋白,它们可调节肠屏障通透性[20-21]。紧密连接蛋白一旦结构受损,肠屏障通透性就会增加,导致肠黏膜层遭受管腔抗原的侵入,其会放大肠黏膜内的炎症级联反应,肠道炎症逐渐加重[22-23]。体内外实验显示CYP改善了肠道中紧密连接蛋白表达的衰减。研究表明,CD结肠黏膜中炎症因子的异常升高显著降低了紧密连接蛋白的表达,最终导致肠屏障功能损伤[18]。通过GO富集分析,发现CYP在CD中可调控炎症应答。进一步的实验结果证实CYP显著降低了TNBS小鼠结肠黏膜和Caco2细胞中IL-6、TNF-α、IL-1β和IFN-γ蛋白和mRNA的水平,表明CYP保护肠屏障的作用至少部分是通过拮抗肠黏膜炎症反应。

    为进一步探究CYP拮抗肠黏膜炎症反应进而改善肠屏障的潜在作用机制,本研究探讨了CYP干预对TLR4/NF-κB信号通路的影响。TLR4/NF-κB信号通路是调控CD肠道炎症的关键信号通路,其激活可诱导炎症加重[24]。研究表明,肠道受损的同时伴随着TLR4的激活,其会导致NF-κB的磷酸化和核易位,引起炎症因子大量产生[25]。并发现,NF-κB信号的激活会促进CD的发生发展[26]。越来越多的证据表明,多种药物可通过抑制肠道TLR4/NF-κB信号通路而对小鼠结肠炎表现出显著的治疗作用[27-28]。本研究结果表明CYP改善TNBS诱导的小鼠CD样结肠炎和Caco2细胞的炎症反应与TLR4/NF-κB信号通路相关。以上结果提示CYP可能通过调控TLR4/NF-κB信号通路发挥拮抗肠黏膜炎症反应的作用。

    本研究还存在一些局限性。首先,本研究虽证明了CYP通过拮抗肠黏膜炎症反应缓解TNBS诱导的小鼠CD样结肠炎,但CYP发挥抗肠炎作用的途径可能不止这一条。其次,CYP拮抗肠黏膜炎症反应与其对TLR4/NF-κB信号通路的调控相关,但也不排除其他调控机制参与其中。因此,本研究结果仅作为探索性结果。

    综上所述,本研究证明了CYP可能通过调控TLR4/NF-κB信号通路的表达拮抗肠黏膜炎症反应,从而发挥拮抗小鼠CD样结肠炎的作用,这进一步证实了天然植物提取物治疗CD的有效性。另外,本研究丰富了CYP的生物学功能及机制,也通过对CD肠道炎症的缓解扩大了其治疗疾病的范围。

    *    *    *

    作者贡献声明 张诺负责论文构思、数据审编、正式分析、经费获取、研究方法和初稿写作,张敏负责数据审编、调查研究和初稿写作,宋雪负责经费获取、调查研究和监督指导,张小凤负责调查研究和研究方法,耿志军负责调查研究和软件,王炼和李静负责研究项目管理和软件,葛思堂负责验证和可视化,左芦根负责经费获取、监督指导和审读与编辑写作,胡建国负责数据审编、经费获取、提供资源、监督指导和审读与编辑写作。所有作者已经同意将文章提交给本刊,且对将要发表的版本进行最终定稿,并同意对工作的所有方面负责。

    Author Contribution  ZHANG Nuo is responsible for conceptualization, data curation, formal analysis, funding acquisition, methodology, and writing--original draft. ZHANG Min is responsible for data curation, investigation, and writing--original draft. SONG Xue is responsible for funding acquisition, investigation, and supervision. ZHANG Xiaofeng is responsible for investigation and methodology. GENG Zhijun is responsible for investigation and software. WANG Lian and LI Jing are responsible for project administration and software. GE Sitang is responsible for validation and visualization. ZUO Lugen is responsible for funding acquisition, supervision, and writing--review and editing. HU Jianguo is responsible for data curation, funding acquisition, resources, supervision, and writing--review and editing. All authors consented to the submission of the article to the Journal. All authors approved the final version to be published and agreed to take responsibility for all aspects of the work.

    利益冲突 所有作者均声明不存在利益冲突

    Declaration of Conflicting Interests All authors declare no competing interests.

  • 图  1   CYP治疗对TNBS诱导小鼠肠炎症状的影响

    Figure  1.   Effect of CYP treatment on TNBS-induced colitis symptoms in mice

    A, Changes in body mass; B, DAI score of the mice; C, the colon length of the mice; D, representative picture of the colon of the mice; E, the inflammation score of the colon tissue of the mice; F, HE staining. * P<0.05, vs. WT group; # P<0.05, vs. TNBS group. n=10.

    图  2   CYP治疗对TNBS诱导小鼠肠屏障功能及结构的影响

    Figure  2.   Effect of CYP treatment on TNBS-induced intestinal barrier function and structure in mice

    A, Serum levels of FITC-dextran; B, TEER values of colon; C-E, the proportion of intestinal bacteria translocation; F, immunofluorescence staining; G, Western blot. * P<0.05, vs. WT group; # P<0.05, vs, TNBS group. n=10.

    图  3   CYP治疗对TNBS诱导小鼠肠黏膜组织中炎症反应的影响

    Figure  3.   Effect of CYP treatment on TNBS-induced inflammatory responses in mouse intestinal mucosal tissue

    A, GO functional enrichment analysis of intersection targets of CYP and CD: inflammatory response (P<0.001); B-E, ELISA; F-I, qRT-PCR. * P<0.05, vs. WT group; # P<0.05, vs. TNBS group. n=10.

    图  4   CYP干预对LPS刺激的Caco2细胞屏障功能及结构的影响

    Figure  4.   Effects of CYP intervention on barrier function and structure of Caco2 cells stimulated by LPS

    A, TEER value; B, immunofluorescence staining; C, Western blot. * P<0.05, vs. control group; # P<0.05, vs. LPS group. n=3.

    图  5   CYP干预对LPS刺激的Caco2细胞炎症反应的影响

    Figure  5.   Effect of CYP intervention on the inflammatory response of LPS-stimulated Caco2 cells

    A-D, ELISA; E-H, qRT-PCR. * P<0.05, vs. control group; # P<0.05, vs. LPS group. n=3.

    图  6   CYP干预对体内和体外TLR4/NF-κB信号通路的影响(Western blot)

    Figure  6.   Effect of CYP intervention on TLR4/NF-κB signaling pathway in vivo and in vitro (Western blot)

    A, Colon tissues (* P<0.05, vs. WT group; # P<0.05, vs. TNBS group. n=10); B, Caco2 cells (* P<0.05, vs. control group; # P<0.05, vs. LPS group. n=3).

    表  1   引物序列

    Table  1   Primer sequences

    Gene name Primer sequences
    IL-6 (F) 5′-CTGCAAGAGACTTCCATCCAG-3′
    IL-6 (R) 5′-AGTGGTATAGACAGGTCTGTTGG-3′
    TNF-α (F) 5′-CCTGTAGCCCACGTCGTAG-3′
    TNF-α (R) 5′-GGGAGTAGACAAGGTACAACCC-3′
    IL-1β (F) 5′-GAAATGCCACCTTTTGACAGTG-3′
    IL-1β (R) 5′-TGGATGCTCTCATCAGGACAG-3′
    IFN-γ (F) 5′-GCCACGGCACAGTCATTGA-3′
    IFN-γ (R) 5′-TGCTGATGGCCTGATTGTCTT-3′
    β-actin (F) 5′-GTGACGTTGACATCCGTAAAGA-3′
    β-actin (R) 5′-GCCGGACTCATCGTACTCC-3′
    下载: 导出CSV
  • [1]

    TORRES J, MEHANDRU S, COLOMBEL J F, et al. Crohn's disease. Lancet, 2017, 389(10080): 1741–1755. doi: 10.1016/S0140-6736(16)31711-1.

    [2]

    PETAGNA L, ANTONELLI A, GANINI C, et al. Pathophysiology of Crohn's disease inflammation and recurrence. Biol Direct, 2020, 15(1): 23. doi: 10.1186/s13062-020-00280-5.

    [3]

    DOLINGER M, TORRES J, VERMEIRE S. Crohn's disease. Lancet, 2024, 403(10432): 1177–1191. doi: 10.1016/S0140-6736(23)02586-2.

    [4]

    XU L, HE B, SUN Y, et al. Incidence of inflammatory bowel disease in urban China: a nationwide population-based study. Clin Gastroenterol Hepatol, 2023, 21(13): 3379–3386.e29. doi: 10.1016/j.cgh.2023.08.013.

    [5]

    BRETTO E, RIBALDONE D G, CAVIGLIA G P, et al. Inflammatory bowel disease: emerging therapies and future treatment strategies. Biomedicines, 2023, 11(8): 2249. doi: 10.3390/biomedicines11082249.

    [6]

    WEN H, ZHANG X, LI Q, et al. Ruscogenins improve CD-like enteritis by inhibiting apoptosis of intestinal epithelial cells and activating Nrf2/NQO1 pathway. Oxid Med Cell Longev, 2022, 2022: 4877275. doi: 10.1155/2022/4877275.

    [7]

    HENDRICKSON B A, GOKHALE R, CHO J H. Clinical aspects and pathophysiology of inflammatory bowel disease. Clin Microbiol Rev, 2002, 15(1): 79–94. doi: 10.1128/CMR.15.1.79-94.2002.

    [8]

    QIAO N, WANG Q, TAO Y, et al. α-Cyperone ameliorates depression in mammary gland hyperplasia and chronic unpredictable mild stress rat by regulating hormone, inflammation, and oxidative stress. Immunopharmacol Immunotoxicol, 2023, 45(1): 73–82. doi: 10.1080/08923973.2022.2115925.

    [9]

    PAN S, ZHANG Z, FENG Q, et al. An efficient high-speed counter-current chromatography method for the preparative separation of sesquiterpenoids from the rhizomes of Cyperus rotundus L. combined with evaluation of the anti-inflammation activity in vitro and molecular docking. J Sep Sci, 2023, 46(10): e2300042. doi: 10.1002/jssc.202300042.

    [10]

    HUANG B, HE D, CHEN G, et al. α-Cyperone inhibits LPS-induced inflammation in BV-2 cells through activation of Akt/Nrf2/HO-1 and suppression of the NF-κB pathway. Food Funct, 2018, 9(5): 2735–2743. doi: 10.1039/c8fo00057c.

    [11]

    DENG M, XIE P, LIU J, et al. α-Cyperone improves rat spinal cord tissue damage via Akt/Nrf2 and NF-κB pathways. J Surg Res, 2022, 276: 331–339. doi: 10.1016/j.jss.2022.02.006.

    [12]

    HUANG B, HU G, ZONG X, et al. α-Cyperone protects dopaminergic neurons and inhibits neuroinflammation in LPS-induced Parkinson's disease rat model via activating Nrf2/HO-1 and suppressing NF-κB signaling pathway. Int Immunopharmacol, 2023, 115: 109698. doi: 10.1016/j.intimp.2023.109698.

    [13]

    SPENCER D M, VELDMAN G M, BANERJEE S, et al. Distinct inflammatory mechanisms mediate early versus late colitis in mice. Gastroenterology, 2002, 122(1): 94–105. doi: 10.1053/gast.2002.30308.

    [14] 杨子, 赵天豪, 程阳, 等. 香叶木素通过调节小鼠的肠道免疫平衡减轻克罗恩病样结肠炎: 基于抑制PI3K/AKT通路. 南方医科大学学报, 2023, 43(3): 474–482. doi: 10.12122/j.issn.1673-4254.2023.03.19.

    YANG Z, ZHAO T H, CHENG Y, et al. Diosmetin regulates intestinal immune balance by inhibiting PI3K/AKT signaling to relieve 2, 4, 6-trinitrobenzene sulfonic acid-induced Crohn's disease-like colitis in mice. J South Med Univ, 2023, 43(3): 474–482. doi: 10.12122/j.issn.1673-4254.2023.03.19.

    [15]

    KATSANDEGWAZA B, HORSNELL W, SMITH K. Inflammatory bowel disease: a review of pre-clinical murine models of human disease. Int J Mol Sci, 2022, 23(16): 9344. doi: 10.3390/ijms23169344.

    [16]

    TAVARES JUNIOR A G, De ARAÚJO J, MENEGUIN A B, et al. Characteristics, properties and analytical/bioanalytical methods of 5-Aminosalicylic acid: a review. Crit Rev Anal Chem, 2022, 52(5): 1000–1014. doi: 10.1080/10408347.2020.1848516.

    [17]

    LIU X, JIN X, YU D, et al. Suppression of NLRP3 and NF-κB signaling pathways by α-Cyperone via activating SIRT1 contributes to attenuation of LPS-induced acute lung injury in mice. Int Immunopharmacol, 2019, 76: 105886. doi: 10.1016/j.intimp.2019.105886.

    [18]

    WANG K, WU L Y, DOU C Z, et al. Research advance in intestinal mucosal barrier and pathogenesis of Crohn's disease. Gastroenterol Res Pract, 2016, 2016: 9686238. doi: 10.1155/2016/9686238.

    [19]

    ZHOU L, ZHU L, WU X, et al. Decreased TMIGD1 aggravates colitis and intestinal barrier dysfunction via the BANF1-NF-κB pathway in Crohn's disease. BMC Med, 2023, 21(1): 287. doi: 10.1186/s12916-023-02989-2.

    [20]

    YUAN S N, WANG M X, HAN J L, et al. Improved colonic inflammation by nervonic acid via inhibition of NF-κB signaling pathway of DSS-induced colitis mice. Phytomedicine, 2023, 112: 154702. doi: 10.1016/j.phymed.2023.154702.

    [21]

    GHEZZAL S, POSTAL B G, QUEVRAIN E, et al. Palmitic acid damages gut epithelium integrity and initiates inflammatory cytokine production. Biochim Biophys Acta Mol Cell Biol Lipids, 2020, 1865(2): 158530. doi: 10.1016/j.bbalip.2019.158530.

    [22]

    QIU S, LI P, ZHAO H, et al. Maresin 1 alleviates dextran sulfate sodium-induced ulcerative colitis by regulating NRF2 and TLR4/NF-kB signaling pathway. Int Immunopharmacol, 2020, 78: 106018. doi: 10.1016/j.intimp.2019.106018.

    [23]

    CHEN Z, TANG J, WANG P, et al. GYY4137 attenuates sodium deoxycholate-induced intestinal barrier injury both in vitro and in vivo. Biomed Res Int, 2019, 2019: 5752323. doi: 10.1155/2019/5752323.

    [24]

    DEJBAN P, NIKRAVANGOLSEFID N, CHAMANARA M, et al. The role of medicinal products in the treatment of inflammatory bowel diseases (IBD) through inhibition of TLR4/NF-kappaB pathway. Phytother Res, 2021, 35(2): 835–845. doi: 10.1002/ptr.6866.

    [25]

    WANG J W, PAN Y B, CAO Y Q, et al. Loganin alleviates LPS-activated intestinal epithelial inflammation by regulating TLR4/NF-κB and JAK/STAT3 signaling pathways. Kaohsiung J Med Sci, 2020, 36(4): 257–264. doi: 10.1002/kjm2.12160.

    [26]

    XIN J. Critical signaling pathways governing colitis-associated colorectal cancer: Signaling, therapeutic implications, and challenges. Dig Liver Dis, 2023, 55(2): 169–177. doi: 10.1016/j.dld.2022.08.012.

    [27]

    YU C, WANG D, YANG Z, et al. Pharmacological effects of polyphenol phytochemicals on the intestinal inflammation via targeting TLR4/NF-κB signaling pathway. Int J Mol Sci, 2022, 23(13): 6939. doi: 10.3390/ijms23136939.

    [28]

    LI J, WU H, ZHOU J, et al. Ruscogenin attenuates ulcerative colitis in mice by inhibiting caspase-1-dependent pyroptosis via the TLR4/NF-κB signaling pathway. Biomedicines, 2024, 12(5): 989. doi: 10.3390/biomedicines12050989.

© 2024《四川大学学报(医学版)》编辑部
cc

开放获取 本文遵循知识共享署名—非商业性使用4.0国际许可协议(CC BY-NC 4.0),允许第三方对本刊发表的论文自由共享(即在任何媒介以任何形式复制、发行原文)、演绎(即修改、转换或以原文为基础进行创作),必须给出适当的署名,提供指向本文许可协议的链接,同时标明是否对原文作了修改;不得将本文用于商业目的。CC BY-NC 4.0许可协议详情请访问 https://creativecommons.org/licenses/by-nc/4.0

图(6)  /  表(1)
计量
  • 文章访问数:  170
  • HTML全文浏览量:  20
  • PDF下载量:  15
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-04-02
  • 修回日期:  2024-08-09
  • 发布日期:  2024-09-19
  • 刊出日期:  2024-09-19

目录

/

返回文章
返回