Abstract:
Objective To construct a deep learning-based target detection method to help radiologists perform rapid diagnosis of lesions in the CT images of patients with novel coronavirus pneumonia (NCP) by restoring detailed information and mining local information.
Methods We present a deep learning approach that integrates detail upsampling and attention guidance. A linear upsampling algorithm based on bicubic interpolation algorithm was adopted to improve the restoration of detailed information within feature maps during the upsampling phase. Additionally, a visual attention mechanism based on vertical and horizontal spatial dimensions embedded in the feature extraction module to enhance the capability of the object detection algorithm to represent key information related to NCP lesions.
Results Experimental results on the NCP dataset showed that the detection method based on the detail upsampling algorithm improved the recall rate by 1.07% compared with the baseline model, with the AP50 reaching 85.14%. After embedding the attention mechanism in the feature extraction module, 86.13% AP50, 73.92% recall, and 90.37% accuracy were achieved, which were better than those of the popular object detection models.
Conclusion The feature information mining of CT images based on deep learning can further improve the lesion detection ability. The proposed approach helps radiologists rapidly identify NCP lesions on CT images and provides an important clinical basis for early intervention and high-intensity monitoring of NCP patients.