Extracellular Matrix Stiffness Induces Mitochondrial Morphological Heterogeneity via AMPK Activation
-
摘要:目的
探讨人间充质干细胞(human mesenchymal stem cells, hMSCs)中线粒体形态对细胞外基质硬度的力学响应以及腺苷酸激活蛋白激酶(AMP-activated protein kinase, AMPK)对线粒体力学响应的调控作用。
方法首先,通过改变丙烯酰和甲叉双丙烯酰胺的单体浓度,制备杨氏模量为1 kPa(软)和20 kPa(硬)两种硬度的聚丙烯酰胺水凝胶;随后,将hMSCs培养在不同硬度水凝胶上,通过激光共聚焦显微镜和Western blot检测线粒体的形态变化和线粒体稳态相关蛋白AMPK的激活情况;最后,分别利用AMPK激活剂A-769662和抑制剂Compound C改变软硬基底上细胞AMPK的激活,观察线粒体的形态变化。
结果hMSCs中线粒体的形态随水凝胶硬度变化呈现异质性,在1 kPa软基质上,线粒体融合,有74%的线粒体呈现出致密的长纤维网络状结构,而在20 kPa硬基质上高达63.3%线粒体为疏松的短片段化或者点状形貌。Western blot结果显示,硬基质上p-AMPK/AMPK的比例是软基质上的1.6倍,免疫荧光染色结果显示在硬的基质p-AMPK的表达升高,并且呈现出核定位,证明随着细胞外基质硬度的提高,细胞内AMPK的激活程度也不断上升。当在软基质上添加AMPK激活剂A-769662后,线粒体形态由纤维网络状向片段化转变,纤维化程度由74%下降到9.5%,同时AMPK抑制剂Compound C可以促进硬基质上线粒体融合,降低点状线粒体占比。
结论细胞外基质硬度通过AMPK的激活调控hMSCs中线粒体的形态。硬基质会促进AMPK激活,导致线粒体分裂,形成大量片段化的短线粒体。这种基质硬度对线粒体形态的影响可以通过改变AMPK的磷酸化水平进行逆转。
Abstract:ObjectiveTo investigate the mechanical responses of mitochondrial morphology to extracellular matrix stiffness in human mesenchymal stem cells (hMSCs) and the role of AMP-activated protein kinase (AMPK) in the regulation of mitochondrial mechanoresponses.
MethodsTwo polyacrylamide (PAAm) hydrogels, a soft one with a Young's modulus of 1 kPa and a stiff one of 20 kPa, were prepared by changing the monomer concentrations of acrylamide and bis-acrylamide. Then, hMSCs were cultured on the soft and stiff PAAm hydrogels and changes in mitochondrial morphology were observed using a laser confocal microscope. Western blot was performed to determine the expression and activation of AMPK, a protein associated with mitochondrial homeostasis. Furthermore, the activation of AMPK was regulated on the soft and stiff matrixes by AMPK activator A-769662 and the inhibitor Compound C, respectively, to observe the morphological changes of mitochondria.
ResultsThe morphology of the mitochondria in hMSCs showed heterogeneity when there was a change in gel stiffness. On the 1 kPa soft matrix, 74% mitochondria exhibited a dense, elongated filamentous network structure, while on the 20 kPa stiff matrix, up to 63.3% mitochondria were fragmented or punctate and were sparsely distributed. Western blot results revealed that the phosphorylated AMPK (p-AMPK)/AMPK ratio on the stiff matrix was 1.6 times as high as that on the soft one. Immunofluorescence assay results revealed that the expression of p-AMPK was elevated on the hard matrix and showed nuclear localization, which indicated that the activation of intracellular AMPK increased continuously along with the increase in extracellular matrix stiffness. When the hMSCs on the soft matrix were treated with A-769662, an AMPK activator, the mitochondria transitioned from a filamentous network morphology to a fragmented morphology, with the ratio of filamentous network decreasing from 74% to 9.5%. Additionally, AMPK inhibition with Compound C promoted mitochondrial fusion on the stiff matrix and significantly reduced the generation of punctate mitochondria.
ConclusionExtracellular matrix stiffness regulates mitochondrial morphology in hMSCs through the activation of AMPK. Stiff matrix promotes the AMPK activation, resulting in mitochondrial fission and the subsequent fragmentation of mitochondria. The impact of matrix stiffness on mitochondrial morphology can be reversed by altering the level of AMPK phosphorylation.
-
线粒体作为细胞内能量代谢的重要场所,持续为细胞产生维持生理活动所需的能量,因此一直处于高度动态的过程中[1]。这种动态变化,在形态上表现为不断的融合和分裂,从而维持线粒体的形貌,保障线粒体的功能,满足细胞的不同生理需求[2-3]。
当细胞处于代谢或者环境压力时,细胞会启动线粒体形态转变过程,比如处于饥饿状态的细胞,线粒体会迅速转变成为纤维网络结构,抵抗凋亡[4-5]。在干细胞中,线粒体的形态变化与干细胞命运紧密相连[1, 6]。当神经干细胞线粒体融合加强或分裂受抑制情况下,线粒体会呈现出纤维网络状形态,神经干细胞将保持干细胞的特性;而当抑制线粒体融合或者促进线粒体分裂时,线粒体会向片段化发展,神经干细胞会向神经元发展,促进神经再生[1]。
在细胞生长过程中,除去生化信号的影响,细胞外基质的力学影响也受到越来越多的关注。大量研究表明,细胞外基质硬度的改变会影响MSCs的分化,而且这种外界力学信号会通过能量消耗调控细胞内代谢相关蛋白的激活,比如细胞内能量感受器腺苷酸激活蛋白激酶(AMP-activated protein kinase, AMPK)[7-9]。AMPK作为维持线粒体稳态关键调控因子,当线粒体功能或产生三磷酸腺苷(triphosadenine, ATP)受损时,AMPK被激活[10-11]。激活的AMPK会促进线粒体分裂与新生,调控细胞内线粒体网的形状和控制线粒体自噬,以产生更多的ATP维系细胞能量需求[12-14]。但关于细胞外基质硬度对线粒体形态变化的影响以及相关调控机制,目前尚未明确。因此,本研究以人间充质干细胞(human mesenchymal stem cells, hMSCs)为模式细胞,采用前期实验证明过可以明确促进MSCs成脂分化(1 kPa,软基质)和成骨分化(20 kPa,硬基质)的聚丙烯酰胺(polyacrylamide, PAAm)水凝胶调控线粒体形态的力学响应[15-16],通过观察线粒体在不同软硬PAAm水凝胶基质上的形态变化,以及调控AMPK的激活与抑制对细胞外基质硬度调控线粒体的形态异质性及相关机制进行初步探究。
1. 材料与方法
1.1 细胞和主要实验材料
Lonza人骨髓来源的间充质干细胞传代至第六代使用,丙烯酰胺(acrylamide, AA)(源叶生物),甲叉双丙烯酰胺(bis-acrylamide, BA)(麦克林),3-(三甲氧基甲硅基)甲基丙烯酸丙酯(麦克林),sulfo-SANPAH(罗恩),线粒体荧光探针(Thermo Fisher,美国),鬼笔环肽(索莱宝科技有限公司),DAPI(贝博生物科技有限公司),Compound C(Sigma Aldrich,美国),A-769662(Cayman Chemical,美国),AMPK alpha 1 (phospho T183)+AMPK alpha 2 (phospho T172) 兔多克隆抗体(Abcam,美国),Alexa-488 羊抗兔(Thermo Fisher,美国),β-actin(Abcam,美国)。
1.2 实验方法
1.2.1 制备不同硬度PAAm水凝胶
将直径为13 mm玻璃盖玻片经过等离子体氧化处理后,浸泡于由质量体积比为0.3%的3-(三甲氧基甲硅基)甲基丙烯酸丙酯和甲苯组成的混合溶液中静置过夜。1 kPa软凝胶由质量体积比为8%的AA和0.02%的BA构成,而20 kPa硬凝胶则由质量体积比为20%的AA和0.15%的BA构成。
1.2.2 PAAm水凝胶的表面改性
为了更好的促进细胞黏附,在PAAm水凝胶表面用胶原蛋白进行改性。首先,将30 μL 1 mg/mL的sulfo-SANPAH置于PAAm水凝胶表面,轻轻旋涂均匀;随后,置于365 nm紫外灯下照射5 min后,PBS洗涤,并重复交联过程;最后,在室温下,用50 μg/mL的胶原蛋白溶液浸泡2 h,并在种植细胞前用PBS洗涤两次。
1.2.3 细胞培养
hMSCs用含有10%胎牛血清、1%青霉素/链霉素和1%谷氨酰胺的DMEM培养基中培养至第六代用于后续实验。在AMPK调控实验中,hMSCs种植于不同硬度水凝胶表面30 min后,添加AMPK激动剂A-769662(100或200 μmol/L)或抑制剂Compound C(5或10 μmol/L),继续培养20 h后观察线粒体形态。
1.2.4 线粒体形态观察及统计
线粒体形态观察是细胞培养至一定时间后,向培养基中添加100 nmol/L线粒体荧光探针,孵育30 min,进行激光共聚焦显微层扫。线粒体形态统计是通过Image Pro Plus®软件进行。首先,将重构的层扫线粒体荧光图片转换成8 bit格式,校正背景获得一组COR图片。利用线性对比度拉伸对COR图像进行对比度优化;随后,使用顶帽滤波和中值滤波对图像进行处理,得到二值化图像,该图像上以白色表示线粒体;最后,用布尔操作处理COR和二值化图产生掩膜图像,对掩膜图像进行统计分析[15, 17]。
1.2.5 Western blot
采用Western blot检测不同细胞外基质硬度对hMSCs中AMPK激活的影响,目的蛋白为AMPK和p-AMPK,内参为β-actin。首先,将在不同软硬PAAm水凝胶上培养20 h后的细胞裂解提蛋白并用BCA试剂盒测定蛋白浓度。随后,将等量的蛋白和分子量标志物加至SDS-PAGE凝胶孔中,进行电泳,之后进行聚偏氟乙膜转膜和脱脂奶粉封闭。然后,将膜或条带置于孵育盒中,依次添加一抗和二抗。最后,用ECL发光显影液显色,在化学发光成像系统中进行检测。Image LabTM 5.0软件对曝光图像进行统计。
1.2.6 免疫荧光染色
细胞培养至20 h后进行免疫荧光染色。首先,用体积分数为4%多聚甲醛室温固定、0.5% Triton X-100透膜后及5%脱脂奶粉封闭;随后,依次加入p-AMPK的一抗、荧光二抗、鬼笔环肽及DAPI;最后,用抗荧光衰减封片剂封片,在激光共聚焦显微镜(LSM 710, Carl Zeiss,德国)下进行拍照记录。
1.3 统计学方法
数据的表现形式为$ \bar x \pm s $。数据分析采用单因素方差分析(ANOVA)和t检验,P<0.05为差异有统计学意义。
2. 结果
2.1 细胞外基质硬度调控线粒体形态变化
结果显示,在1 kPa软基质上,线粒体分布集中,以致密的超长网络状结构环绕在细胞核周围;在20 kPa硬基质上,细胞中出现大量片段状或点状线粒体,并且分布较为松散,以细胞核为核心向四周铺开(图1A)。通过对放大后的线粒体形貌观察,可以明显看到在软基质上,线粒体发生融合,通过纤维网络结构紧紧地缠绕集中在一起,而硬基质上,分裂后的点状线粒体散落在细胞各处(图1B)。线粒体的定量统计结果显示,软硬基质上点状、片段状以及纤维状的线粒体占比差异性很大,尤其是较长的纤维状和较短的点状在不同软硬基质上的占比差异有统计学意义。硬基质上,细胞中有高达48.2%的线粒体呈现点状,而软基质上,点状仅占7.6%(图1C)。该差异性暗示着在硬基质上线粒体正在不断的发生分裂,产生新的线粒体,以满足细胞的能量需求。以上结果表明,细胞外基质硬度的提高会促进线粒体分裂,造成线粒体形态的片段化。
图 1 细胞中线粒体在不同软硬基质上的形貌变化Figure 1. Changes of mitochondrial morphology on soft or stiff matrixA, Representative morphology of mitochondria; B, zoomed-in image of mitochondria for clear visualization, dashed circles with different color represent the details of mitochondria with different morphologies, the morphological characteristics refer to the description of corresponding colors in C; C, quantification of mitochondrial morphology, n>6, ** P<0.01, vs. soft matrix.2.2 线粒体稳态调控因子AMPK受细胞外基质硬度的影响
Western blot结果显示,在不同软硬基质上,AMPK的磷酸化水平差异有统计学意义(P<0.01)。硬基质上p-AMPK/AMPK的比例是软基质上的1.6倍,证明随着细胞外基质硬度的提高,细胞内AMPK的激活程度也不断上升(图2A)。免疫荧光染色结果显示在硬的基质p-AMPK的表达升高,并且呈现出核定位,进一步验证了AMPK的磷酸化受细胞外基质硬度的影响(图2B)。
2.3 调控AMPK激活可以改变线粒体形态的力学响应
结果(图3)显示,AMPK激活剂A-769662会促进软基质上细胞中线粒体的分裂,线粒体形态由致密的纤维网络状结构向疏松的片段化转变,并且线粒体的分布由环绕在细胞核周围向细胞边缘处分布(图3A)。而AMPK抑制剂Compound C则促进硬基质上细胞中线粒体的融合,线粒体由分散的点状向致密的网络状进行融合,并且聚集到细胞核周围(图3B)。统计结果(图3C)显示,调控AMPK的激活可以显著改变细胞中点状、片段状以及纤维状的线粒体的占比。促进软基质上细胞中AMPK的激活会使原有的高达74%纤维网络状线粒体下降到9.5%,而抑制硬基质上细胞中AMPK的激活则会显著抑制点状线粒体的占比,使其由原有的48.2%下降到15.4%,进一步验证了不同硬度的细胞外基质上线粒体形态的力学响应是受到AMPK的直接调控。
图 3 AMPK激活对线粒体形态的影响Figure 3. Effect of AMPK activation on mitochondrial morphologyA, Representative morphology of mitochondria on soft or stiff matrix; B, zoomed-in image of mitochondria for clear visualization, dashed circles with different color represent the details of mitochondria with different morphologies, the morphological characteristics refer to the description of corresponding colors in C; C, quantification of mitochondrial morphology. n>6, * P<0.05, ** P<0.01.3. 讨论
细胞能量代谢作为一切生命活动的基础,为细胞伸展、增殖、迁移和分化等细胞行为提供能量支持。近期研究发现细胞的力学响应过程伴随着大量的能量消耗,具体表现在细胞需要通过形成黏着斑位点、重构细胞骨架、维持细胞张力等一系列耗能行为来抵抗外界的力学变化[18-20]。XIE等[15]发现当细胞外基质硬度增加时,细胞内ATP生成能力急剧增加,细胞会通过AMPK介导的能量代谢调控细胞力学响应、引导细胞分化。而线粒体作为细胞中能量的主要产生场所,因此笔者猜想这种由外界机械信号介导的细胞内能量需求的变化,也会对细胞内线粒体造成显著影响。
线粒体作为一种动态的细胞器,可以不断地进行融合和分裂,其形态变化与细胞内的能量代谢紧密相关。当细胞处于稳定生长情况下,线粒体的融合和分裂会趋于平衡,呈现出形态的稳定性,从而来满足细胞生长的能量需求。而当细胞外生化信号发生变化时,线粒体会呈现出不同的形态变化。比如RAMBOLD等[4]研究发现当细胞处于饥饿状态,细胞内能量耗尽时,线粒体会减少分裂避免生成新生线粒体,进而抑制分解代谢,降低ATP产生。TOYAMA等[14]也发现,当细胞处于代谢应激压力下时,线粒体会转换成分裂状态,分裂出更多的新生片段化线粒体,加速ATP的产生,恢复能量稳态。除了既往研究的这些生化信号对线粒体形态影响,本研究创新性地发现线粒体形态亦会受到外界机械信号影响。当细胞外基质硬度增加时,细胞力学响应过程中的两大耗能过程细胞伸展和张力维持急剧增强,进而需要大量ATP维持细胞正常生理状态[8]。此时,在20 kPa硬基质上,细胞中线粒体转化为分裂状态,形成占比高达63.3%的新生点状和片段化线粒体,并分散在细胞内,以便满足细胞不同位点处对能量需求。而10 kPa软基质中,由于细胞骨架和张力都处于低耗能状态,线粒体更加趋于稳定,呈现融合纤维网络结构,并且主要集中在细胞核周围,用于满足细胞调控中心细胞核的能量需求。并且本研究发现,这种线粒体形态的力学响应受AMPK调控。AMPK作为线粒体稳态调节的关键性因子,可通过磷酸化线粒体裂变因子而感知细胞能量状态并调控线粒体分裂[12]。本研究表明,细胞外基质硬度可以调控AMPK的激活,20 kPa硬基质会促进磷酸化的AMPK核表达,显著提高p-AMPK/AMPK比值。这一发现与前期BAYS等[8]的研究具有一致性,BAYS等发现通过当对现E-钙黏蛋白施加力学刺激时,细胞内AMPK的激活水平会显著提高,从而增加葡萄糖摄取以及ATP产生,促进细胞与细胞间黏附位点和细胞骨架的形成。而当抑制硬基质上或促进软基质上的细胞中AMPK的磷酸化水平时,则会使线粒体的形貌发生逆转。综上所述,本研究揭示了细胞线粒体形态对细胞外基质硬度的力学响应,并进一步证明了这种力学响应是通过AMPK这一途径来实现。
在本研究中,另一点值得注意的是线粒体形态与hMSCs分化的关系。在本研究中基质硬度的选择上,笔者选取了可以明确促进成骨分化的20 kPa作为硬基质组和促进成脂分化的1 kPa作为软基质组。在硬基质成骨分化的组别中,线粒体呈片段化分布,而软基质成脂分化组中,线粒体呈网络状形态。这一结果与前期通过生化手段调控线粒体形貌进而影响干细胞分化的研究具有很强的一致性。但目前关于这种力学信号介导的线粒体形态变化是否影响干细胞分化尚不明确,比如线粒体形态变化是通过影响能量产生还是氧化型辅酶Ⅰ、还原型辅酶Ⅰ等代谢产物来调控分化,有待进一步研究。
* * *
作者贡献声明 段沛言负责论文构思、正式分析、研究方法、可视化和初稿写作,刘艺负责论文构思、正式分析、研究方法和初稿写作,林心怡负责论文构思、验证和初稿写作,任洁和何佳负责研究方法、验证和初稿写作,刘肖珩负责研究方法、提供资源和审读与编辑写作,谢静负责论文构思、经费获取、研究方法和审读与编辑写作。所有作者已经同意将文章提交给本刊,且对将要发表的版本进行最终定稿,并同意对工作的所有方面负责。
Author Contribution DUAN Peiyan is responsible for conceptualization, formal analysis, methodology, visualization, and writing--original draft. LIU Yi is responsible for conceptualization, formal analysis, methodology, and writing--original draft. LIN Xinyi is responsible for conceptualization, validation, and writing--original draft. REN Jie and HE Jia are responsible for methodology, validation, and writing--original draft. LIU Xiaoheng is responsible for methodology, resources, and writing--review and editing. XIE Jing is responsible for conceptualization, funding acquisition, methodology, and writing--review and editing. All authors consented to the submission of the article to the Journal. All authors approved the final version to be published and agreed to take responsibility for all aspects of the work.
利益冲突 所有作者均声明不存在利益冲突
Declaration of Conflicting Interests All authors declare no competing interests.
-
图 1 细胞中线粒体在不同软硬基质上的形貌变化
Figure 1. Changes of mitochondrial morphology on soft or stiff matrix
A, Representative morphology of mitochondria; B, zoomed-in image of mitochondria for clear visualization, dashed circles with different color represent the details of mitochondria with different morphologies, the morphological characteristics refer to the description of corresponding colors in C; C, quantification of mitochondrial morphology, n>6, ** P<0.01, vs. soft matrix.
图 3 AMPK激活对线粒体形态的影响
Figure 3. Effect of AMPK activation on mitochondrial morphology
A, Representative morphology of mitochondria on soft or stiff matrix; B, zoomed-in image of mitochondria for clear visualization, dashed circles with different color represent the details of mitochondria with different morphologies, the morphological characteristics refer to the description of corresponding colors in C; C, quantification of mitochondrial morphology. n>6, * P<0.05, ** P<0.01.
-
[1] IWATA R, CASIMIR P, VANDERHAEGHEN P. Mitochondrial dynamics in postmitotic cells regulate neurogenesis. Science,2020,369(6505): 858–862. doi: 10.1126/science.aba9760.
[2] CHAN D C. Mitochondrial dynamics and its involvement in disease. Annu Rev Pathol,2020,15: 235–259. doi: 10.1146/annurev-pathmechdis-012419-032711.
[3] TILOKANI L, NAGASHIMA S, PAUPE V, et al. Mitochondrial dynamics: overview of molecular mechanisms. Essays Biochem,2018,62(3): 341–360. doi: 10.1042/EBC20170104.
[4] RAMBOLD A S, KOSTELECKY B, ELIA N, et al. Tubular network formation protects mitochondria from autophagosomal degradation during nutrient starvation. Proc Natl Acad Sci U S A,2011,108(25): 10190–10195. doi: 10.1073/pnas.1107402108.
[5] KLEELE T, REY T, WINTER J, et al. Distinct fission signatures predict mitochondrial degradation or biogenesis. Nature,2021,593(7859): 435–439. doi: 10.1038/s41586-021-03510-6.
[6] KHACHO M, CLARK A, SVOBODA D S, et al. Mitochondrial dynamics impacts stem cell identity and fate decisions by regulating a nuclear transcriptional program. Cell Stem Cell,2016,19(2): 232–247. doi: 10.1016/j.stem.2016.04.015.
[7] SALVI A M, DEMALI K A. Mechanisms linking mechanotransduction and cell metabolism. Curr Opin Cell Biol,2018,54: 114–120. doi: 10.1016/j.ceb.2018.05.004.
[8] BAYS J L, CAMPBELL H K, HEIDEMA C, et al. Linking E-cadherin mechanotransduction to cell metabolism through force-mediated activation of AMPK. Nat Cell Biol,2017,19(6): 724–731. doi: 10.1038/ncb3537.
[9] SOUSA B, PEREIRA J, PAREDES J. The crosstalk between cell adhesion and cancer metabolism. Int J Mol Sci,2019,20(8): 1933. doi: 10.3390/ijms20081933.
[10] TREFTS E, SHAW R J. AMPK: restoring metabolic homeostasis over space and time. Mol Cell,2021,81(18): 3677–3690. doi: 10.1016/j.molcel.2021.08.015.
[11] STEINBERG G R, HARDIE D G. New insights into activation and function of the AMPK. Nat Rev Mol Cell Biol,2023,24(4): 255–272. doi: 10.1038/s41580-022-00547-x.
[12] HERZIG S, SHAW R J. AMPK: guardian of metabolism and mitochondrial homeostasis. Nat Rev Mol Cell Biol,2018,19(2): 121–135. doi: 10.1038/nrm.2017.95.
[13] QUIRÓS P M, MOTTIS A, AUWERX J. Mitonuclear communication in homeostasis and stress. Nat Rev Mol Cell Biol,2016,17(4): 213–226. doi: 10.1038/nrm.2016.23.
[14] TOYAMA E Q, HERZIG S, COURCHET J, et al. AMP-activated protein kinase mediates mitochondrial fission in response to energy stress. Science,2016,351(6270): 275–281. doi: 10.1126/science.aab4138.
[15] XIE J, BAO M, HU X, et al. Energy expenditure during cell spreading influences the cellular response to matrix stiffness. Biomaterials,2021,267: 120494. doi: 10.1016/j.biomaterials.2020.120494.
[16] TRAPPMANN B, GAUTROT J E, CONNELLY J T, et al. Extracellular-matrix tethering regulates stem-cell fate. Nat Mater,2012,11(7): 642–649. doi: 10.1038/nmat3339.
[17] BIRD G S, DEHAVEN W I, SMYTH J T, et al. Methods for studying store-operated calcium entry. Methods,2008,46(3): 204–212. doi: 10.1016/j.ymeth.2008.09.009.
[18] SPLITT R L, DEMALI K A. Metabolic reprogramming in response to cell mechanics. Biol Cell,2023,115(5): e202200108. doi: 10.1111/boc.202200108.
[19] DeWANE G, SALVI A M, DeMALI K A. Fueling the cytoskeleton-links between cell metabolism and actin remodeling. J Cell Sci,2021,134(3): jcs248385. doi: 10.1242/jcs.248385.
[20] PARK J S, BURCKHARDT C J, LAZCANO R, et al. Mechanical regulation of glycolysis via cytoskeleton architecture. Nature,2020,578(7796): 621–626. doi: 10.1038/s41586-020-1998-1.
-
期刊类型引用(2)
1. 李均,徐艺,冉阳,徐刚,王均生. 汉黄芩素调节AMPK/NLRP3信号通路对H/R诱导的心肌细胞凋亡的影响. 现代生物医学进展. 2024(17): 3211-3216+3225 . 百度学术
2. 胡宏志,汪能,李娟,李冰,姚金龙. 青藤碱调节AMPK/mTOR/ULK1信号通路对IL-1β诱导的关节软骨细胞自噬和凋亡的影响. 疑难病杂志. 2024(11): 1379-1384+1398 . 百度学术
其他类型引用(0)

开放获取 本文遵循知识共享署名—非商业性使用4.0国际许可协议(CC BY-NC 4.0),允许第三方对本刊发表的论文自由共享(即在任何媒介以任何形式复制、发行原文)、演绎(即修改、转换或以原文为基础进行创作),必须给出适当的署名,提供指向本文许可协议的链接,同时标明是否对原文作了修改;不得将本文用于商业目的。CC BY-NC 4.0许可协议详情请访问 https://creativecommons.org/licenses/by-nc/4.0