Abstract:
Jawbone injuries resulting from trauma, diseases, and surgical resections are commonly seen in clinical practice, necessitating precise and effective strategies for repair and reconstruction to restore both function and aesthetics. The precise and effective repair and the reconstruction of jawbone injuries pose a significant challenge in the field of oral and maxillofacial surgery, owing to the unique biomechanical characteristics and physiological functions of the jawbone. The natural repair process following jawbone injuries involves stages such as hematoma formation, inflammatory response, ossification, and bone remodeling. Bone morphogenetic proteins (BMPs), transforming growth factor beta (TGF-β), vascular endothelial growth factor (VEGF), and other growth factors play crucial roles in promoting jawbone regeneration. Cytokines such as interleukins and tumor necrosis factor play dual roles in regulating inflammatory response and bone repair. In recent years, significant progress in molecular biology research has been made in the field of jawbone repair and reconstruction. Tissue engineering technologies, including stem cell therapy, bioactive scaffolds, and growth factor delivery systems, have found important applications in jawbone repair. However, the intricate molecular regulatory mechanisms involved in the complex jawbone repair and reconstruction methods are not fully understood and still require further research. Future research directions will be focused on the precise control of these molecular processes and the development of more efficient combination therapeutic strategies to promote the effective and functional reconstruction of the jawbone. This review aims to examine the latest findings on the molecular regulatory mechanisms of the repair and reconstruction of jawbone injuries and the therapeutic strategies. The conclusions drawn in this article provide a molecular-level understanding of the repair of jawbone injuries and highlight potential directions for future research.