Abstract:
A ketogenic diet limits energy supply from glucose and stimulates lipolysis, lipid oxidation, and ketogenesis, resulting in elevated levels of ketone bodies in the bloodstream. Ketone bodies are synthesized in the mitochondrial matrix of liver cells and β-hydroxybutyric acid (BHB) is the most abundant type of ketone body. Herein, we reviewed published findings on the metabolism of ketone bodies and the role of BHB in renal diseases. Through blood circulation, ketone bodies reach metabolically active tissues and provides an alternative source of energy. BHB, being a signaling molecule, mediates various types of cellular signal transduction and participates in the development and progression of many diseases. BHB also has protective and therapeutic effects on a variety of renal diseases. BHB improves the prognosis of renal diseases, such as diabetic kidney disease, chronic kidney disease, acute kidney injury, and polycystic kidney disease, through its antioxidant, anti-inflammatory, and stress response mechanisms. Previous studies have focused on the role of ketone bodies in regulating inflammation and oxidative stress in immune cells. Investigations into the effect of elevated levels of ketone bodies on the metabolism of renal podocytes and tubular cells remain inconclusive. Further research is needed to investigate the effect of BHB on podocyte damage and podocyte senescence in renal diseases.