Association Between Different Modes of Respiratory Support and Feeding Intolerance in Preterm Infants: A Retrospective Cohort Study
-
摘要:目的 探讨早产儿住院期间使用的各种呼吸支持模式与早产儿喂养不耐受(feeding intolerance, FI)的关系,为需要呼吸支持的早产儿肠内喂养管理提供参考。方法 对四川大学华西第二医院新生儿科2015年6月–2018年11月期间住院的符合纳入、排除标准的早产儿进行回顾性分析,将使用的呼吸支持模式作为自变量,以FI为结局指标。按照早产儿住院期间使用的呼吸支持模式进行分组,对比各呼吸支持模式与FI之间的关系。结果 共有272例早产儿被纳入研究,logistic回归分析提示与常压吸氧相比,调整混杂因素后经鼻高流量(high flow nasal cannula, HFNC)可能减少FI的发生〔比值比(odds ratio, OR)=0.53,95%置信区间(confidence interval, CI):0.06~4.77〕,其余通气模式可能增加FI的发生;与经鼻持续气道正压通气(nasal continuous positive airway pressure, NCPAP)相比,双水平气道正压通气(bilevel positive airway pressure, BIPAP)和有创通气可能增加FI发生(调整后OR值分别为1.31、1.69,95%CI分别为0.67~2.55、0.65~4.41);而BIPAP和有创通气发生FI的概率可能相当(调整后OR=1.00, 95%CI:0.41~2.42)。但上述结果P值均大于0.05。结论 在本研究的呼吸支持模式中,使用HFNC发生FI的概率可能最低,使用NCPAP、BIPAP和有创通气时需关注肠内喂养管理,警惕FI的发生。因受限于样本量,此结论需进一步证实。Abstract:Objective To explore the relationship between different modes of respiratory support and feeding intolerance (FI) in preterm infants over the course of their hospitalization and to provide recommendations for the management of enteral feeding in preterm infants requiring respiratory support.Methods A retrospective analysis was performed with the preterm infants admitted to the Neonatal Intensive Care Unit (NICU), West China Second University Hospital, Sichuan University between June 2015 and November 2018. The modes of respiratory support were used as independent variables and FI was used as the outcome indicator. The preterm infants were grouped according to the specific modes of respiratory support they were on over the course of their hospitalization and the relationship between each mode of respiratory support and FI was compared.Results A total of 272 preterm infants were enrolled in the study. After adjusting for confounding factors, findings from logistics regression suggested that, compared with normobaric oxygen, high flow nasal cannula (HFNC) might reduce the incidence of FI (odds ratio [OR]=0.53, 95% confidence interval [CI]: 0.06-4.77), while other modes of respiratory support might increase the incidence of FI. Compared with nasal continuous positive airway pressure (NCPAP), bilevel positive airway pressure (BIPAP) and invasive ventilation might increase the incidence of FI, with the adjusted OR being 1.31 and 1.69, and 95% CI being 0.67-2.55 and 0.65-4.41, respectively. The incidence of FI in BIPAP and invasive ventilation was similar (adjusted OR=1.00, 95% CI: 0.41-2.42). However, the P-values of the above results were all greater than 0.05.Conclusion HFNC has the lowest incidence of FI in the respiratory support modes examined in this study. Attention should be paid to enteral feeding management when using NCPAP, BIPAP, and invasive ventilation to avoid the occurrence of FI. Given the limited sample size, further research is warranted to confirm the conclusion.
-
随着围生期生命支持技术以及医学手段的不断提高和发展,早产儿的出生率及存活率不断增高。由于早产儿肺发育不成熟,肺表面活性物质(pulmonary surfactant, PS)合成分泌不足常导致其发生新生儿呼吸窘迫综合征(respiratory distress syndrome, RDS)以及其他肺部疾病,出现呼吸功能障碍,不能负担自主呼吸,因此早产儿出生后即面临着建立宫外自主呼吸的挑战,针对此类早产儿的治疗方式除了PS给药还包括及时的呼吸支持治疗[1]。随着医疗技术的不断发展,从最初的面罩给氧到与早产儿更贴合的鼻塞给氧,呼吸支持的模式也越来越完善,无创通气模式和有创通气模式也越来越丰富 [2-4]。
在面临呼吸系统挑战的同时,早产儿必须经历的另一个挑战是如何安全快速地达到全肠内喂养。早产儿因其胃肠道功能发育不成熟,在喂养过程中易出现喂养不耐受(feeding intolerance, FI)[5],FI的发生往往导致喂养计划的中断或调整,增加早产儿院内感染等一系列不良后果[6-7]。早产儿喂养方式的选择通常基于呼吸的稳定性。呼吸功的增加、各种供氧装置的使用以及氧气需要量的增加等因素都会影响早产儿对肠内喂养的耐受能力[8-10]。因此关于早产儿呼吸支持的使用可能导致胃肠道相关并发症的猜测是合理的。但是研究关于辅助通气与胃肠道疾病之间的关系尚有争议[11-13],并且胃肠道相关并发症往往只是次要结果[13-16]。且多数研究只对比两种呼吸支持模式之间的差异,尤其以对比经鼻持续气道正压通气(nasal continuous positive airway pressure, NCPAP)与其他呼吸支持模式为主,而对比常压吸氧较少,对比多种呼吸支持模式与FI关系的研究更少。本研究采用回顾性分析探索不同呼吸支持模式与FI的关系,为需要呼吸支持早产儿的肠内喂养管理提供参考,因此主要关注出生体质量小于1500 g或胎龄小于32周的早产儿。
1. 对象与方法
1.1 研究对象
本研究是回顾性队列研究,在四川大学华西第二医院新生儿科进行,将2015年6月–2018年11月期间的住院新生儿纳入研究筛选,所有新生儿接受标准的护理治疗。本研究已获得四川大学华西第二医院伦理委员会批准(批准文号:2018-016),从新生儿的住院系统中采集数据,所纳入数据均匿名,因此不需要签署知情同意书。
纳入标准:①出生体质量小于1500 g或胎龄小于32周;②出生24 h内入院;③住院期间使用呼吸支持。排除标准:①有严重的先天畸形或代谢性疾病;②住院期间未达到全肠内喂养;③住院期间没有母乳喂养。筛选流程图如图1 。
1.2 数据采集
从病历系统中采集纳入研究新生儿的病历资料,其中包括母亲妊娠期病史、新生儿临床特征等情况;自变量为呼吸支持模式,结局指标为FI。患儿住院期间可能发生数次FI,研究中仅记录发生在使用呼吸支持后的FI;若患儿住院期间使用多种呼吸支持技术,仅记录使用后发生FI的呼吸支持方式,若患儿没有发生FI则记录第一次使用的呼吸支持技术。
1.3 定义
尽管在临床工作中已广泛提及FI多年,但FI并没有完全统一的诊断标准,本研究为回顾性研究,主要根据早产儿病历资料进行数据采集,因此,综合国内外FI的诊断标准[17-18],本研究FI诊断标准如下:①奶量不增或减少大于3 d;②胃残余量超过上次喂养量的1/2;③腹胀或呕吐。满足以上任一标准即可诊断为FI。
1.4 统计学方法
采用易侕软件(R语言)2.0版进行数据分析,研究人群描述中连续变量以
$ \bar x \pm s $ 表示,分类变量以例数和百分率表示;组间比较时符合正态分布的连续变量使用t检验,非正态分布的连续变量使用非参数检验,分类变量使用卡方检验。利用logistic回归分析进行单因素分析(未调整混杂因素)和多因素分析(调整混杂因素),混杂因素筛选中,若某变量添加到模型中使自变量效应值改变超过10%,将认为此变量是自变量对因变量的混杂因素,需纳入模型进行调整[19-20]。本研究中各组样本量较小,可能导致统计分析结果P值不显著,因此本研究中P值不能作为唯一判断是否有差异的标准,需将比值比(odds ratio, OR)的变化纳入参考。本研究主要通过OR值及其95%置信区间(confidence interval, CI)来评价不同呼吸支持模式与FI的关联。异常值被排除出统计分析,使用哑变量处理分类变量的缺失变量,使用平均值处理连续变量的缺失变量。P<0.05为差异有统计学意义。2. 结果
2.1 不同呼吸支持模式早产儿临床特征等的比较
本研究共纳入早产儿272例,其中住院期间使用常压吸氧(包括鼻导管吸氧及头罩吸氧)的早产儿14例, 经鼻高流量(high flow nasal cannula, HFNC)7例,NCPAP 68例,双水平气道正压通气(bilevel positive airway pressure, BIPAP)119例,经鼻间歇正压通气(nasal intermittent positive pressure ventilation, NIPPV)2例,有创通气62例。如表1所示,5组(常压吸氧、HFNC、NCPAP、BIPAP、有创通气,NIPPV例数太少不做统计)早产儿在多胎、胎龄、出生体质量、5分钟Apgar评分、贫血、咖啡因治疗、PS治疗、呼吸暂停、动脉导管未闭(patent ductus arteriosus, PDA)中的分布差异有统计学意义(P<0.05),这些差异变量在后续的logistic回归分析中,经过混杂因素筛选后纳入回归分析进行变量调整。
表 1 使用不同呼吸支持模式的早产儿的临床特征和母亲孕期情况Table 1. General data of maternal pregnancy and the clinical characteristics of the infants by different modes of respiratory supportCharacteristic Normobaric oxygen (n=14) HFNC (n=7) NCPAP (n=68) BIPAP (n=119) Invasive ventilation (n=62) P Sex/case (%) 0.85 Female 7 (50.00) 2 (28.57) 25 (36.76) 49 (41.18) 24 (38.71) Male 7 (50.00) 5 (71.43) 43 (63.24) 70 (58.82) 38 (61.29) GA/yr. 31.41±1.65 30.00±0.75 30.44±1.47 29.99±1.67 28.42±1.61 <0.01 BW/g 1341.54±158.58 1260.00±190.61 1354.41±221.86 1321.69±228.25 1140.32±307.97 <0.01 Apgar 5 9.79±0.43 9.29±1.11 9.63±0.60 9.21±0.99 8.05±1.85 <0.01 Multiparity/case (%) 9 (64.29) 6 (85.71) 38 (55.88) 52 (43.70) 41 (66.13) 0.02 Placental abruption/case (%) 0 (0.00) 0 (0.00) 1 (1.47) 7 (5.88) 4 (6.45) 0.47 PROM/case (%) 7 (50.00) 4 (57.14) 31 (45.59) 52 (43.70) 25 (40.32) 0.89 Gestational diabetes mellitus/case (%) 3 (21.43) 1 (14.29) 15 (22.06) 28 (23.53) 11 (17.74) 0.90 Severe preeclampsia/case (%) 1 (7.14) 0 (0.00) 7 (10.29) 12 (10.08) 2 (3.23) 0.45 Glucocorticoid/
case (%)9 (81.82) 3 (100.0) 47 (85.45) 77 (86.52) 48 (92.31) 0.71 Admission temperature/℃ 36.21±0.50 35.99±0.34 36.20±0.44 36.23±0.71 36.15±0.53 0.24 Caffeine/case (%) 7 (50.00) 6 (85.71) 44 (64.71) 107 (89.92) 59 (95.16) <0.01 PS/case (%) 1 (7.14) 3 (42.86) 38 (55.88) 75 (63.03) 57 (91.94) <0.01 Apnea/case (%) 8 (57.14) 5 (71.43) 24 (35.29) 62 (52.10) 46 (74.19) <0.01 ABO/case (%) 1 (7.14) 0 (0.00) 2 (2.94) 3 (2.52) 2 (3.23) 0.89 Anemia/case (%) 7 (50.00) 3 (42.86) 32 (47.06) 72 (60.50) 55 (88.71) <0.01 PDA/case (%) 0 (0.00) 3 (42.86) 3 (4.41) 7 (5.88) 8 (12.90) <0.01 GA: gestational age; BW: birth weight; PROM: premature rupture of membranes; PS: pulmonary surfactant; ABO: ABO blood group incompatibility; PDA: patent ductus arteriosus; HFNC: high flow nasal cannula; NCPAP: nasal continuous positive airway pressure; BIPAP: bilevel positive airway pressure. 2.2 不同呼吸支持模式与FI的关系
使用logistic回归分析对比常压吸氧和其他呼吸支持模式与FI的关系,结果如表2所示。在调整了可能的混杂因素后,结果提示相较于常压吸氧,HFNC可能是FI的保护性因素(OR=0.53,95%CI:0.06~4.77),NCPAP(OR=1.22,95%CI:0.32~4.74)、BIPAP(OR=1.60,95%CI:0.42~6.06)和有创通气(OR=2.10,95%CI:0.45~9.77)仍可能为危险因素,但P值均大于0.05。
表 2 logistic回归分析常压吸氧对比其他呼吸支持模式与FI的关系Table 2. Logistic regression of the association between other respiratory support modes, in comparison with normobaric oxygen, and FIMode n OR (95% CI)
unadjustedOR (95% CI)
adjustedNormobaric oxygen 14 1.0 1.0 HFNC 7 1.00 (0.16-6.26) 0.53 (0.06-4.77) NCPAP 68 1.19 (0.37-3.78) 1.22 (0.32-4.74) BIPAP 119 1.90 (0 .62-5.84) 1.60 (0.42-6.06) Invasive ventilation 62 3.26 (0.99-10.74) 2.10 (0.45-9.77) OR: odds ratio; CI: confidence interval; the other abbreviations are explained in the note to Table 1. The results were adjusted for glucocorticoid, gestational age, birth weight, polyembryony, Apgar 5, PS, apnea, admission temperature, and PDA. 再依次将HFNC、NCPAP、BIPAP与其余模式对比,结果如表3~表5所示。由表3可知,与HFNC相比,NCPAP、BIPAP、有创通气在logistic回归分析中调整混杂因素后可能会增加FI发生的概率,且调整后各变量效应值增加;由表4可知,与NCPAP相比,调整混杂因素后BIPAP和有创通气均可能会增加FI的发生,且调整后各变量效应值减少;由表5可知,调整混杂因素后BIPAP和有创通气发生FI的概率可能一致(OR=1.00,95%CI:0.41~2.42)。但上述P值均大于0.05。
表 3 logistic回归分析HFNC对比其他呼吸支持模式与FI的关系Table 3. Logistic regression of the association between HFNC, in comparison with other respiratory support modes, and FIMode n OR (95% CI)
unadjustedOR (95% CI)
adjustedHFNC 7 1.0 1.0 NCPAP 68 1.19 (0.25-5.70) 2.33 (0.35-15.53) BIPAP 119 1.90 (0.41-8.89) 3.13 (0.48-20.25) Invasive ventilation 62 3.26 (0.66-16.05) 4.19 (0.59-29.61) OR and CI denote the same as those in Table 2; the other abbreviations are explained in the note to Table 1. The results were adjusted for glucocorticoid, gestational age, birth weight, polyembryony, Apgar 5, PS, apnea, admission temperature, and PDA. 表 4 logistic回归分析NCPAP对比其他呼吸支持模式与FI的关系Table 4. Logistic regression of the association between NCPAP, in comparison with other respiratory support modes, and FIMode n OR (95% CI)
unadjustedOR (95% CI)
adjustedNCPAP 68 1.0 1.0 BIPAP 119 1.61 (0.88-2.93) 1.31 (0.67-2.55) Invasive ventilation 62 2.75 (1.33-5.69) 1.69 (0.65-4.41) OR and CI denote the same as those in Table 2; the other abbreviations are explained in the note to Table 1. The results were adjusted for glucocorticoid, gestational age, birth weight, polyembryony, Apgar 5, PS, apnea, admission temperature, and PDA. 表 5 logistic回归分析BIPAP对比有创通气与FI的关系Table 5. Logistic regression of the association between BIPAP, in comparison with invasive ventilation, and FIMode n OR (95% CI) of
unadjustedOR (95% CI) of
adjustedBIPAP 119 1.0 1.0 Invasive ventilation 62 1.71 (0.89-3.31) 1.00 (0.41-2.42) OR and CI denote the same as those in Table 2; BIPAP denotes the same as that in Table 1. The results were adjusted for glucocorticoid, gestational age, birth weight, polyembryony, Apgar 5, PS, apnea, admission temperature, and PDA. 3. 讨论
早产儿因各系统发育的不成熟,出生后就面临着如何建立良好的肺通气和换气功能,以及如何通过不成熟的胃肠道提供充足营养的挑战。FI导致的营养不良状态不仅会损害生长发育,对呼吸系统也有不利影响[21],而针对肺部疾病的呼吸支持治疗也可能影响早产儿的胃肠道功能,导致FI的发生。针对呼吸支持与FI的关系已经有相关研究[8, 10],最常见的假设是,没有完全输送到气道的气体经食管进入胃肠道可能会导致肠胀气,JAILE等[22]将持续正压通气(continuous positive airway pressure, CPAP)条件下婴儿的肠胀气描述为CPAP腹部综合征,也有研究通过评估CPAP对肠系膜血流和胃排空的影响,提示CPAP是FI的危险因素[23-25]。亦有研究报道了与CPAP使用相关的新生儿坏死性小肠结肠炎(necrotizing enterocolitis,NEC)风险有增加或增加趋势[26-28]。
随着呼吸支持在临床的使用越来越广泛,呼吸支持模式不断完善。常压给氧易于获得,是向新生儿输送低到中等浓度氧气的最常用的给氧方式,可用于家庭氧疗,但仅适用于肺部病变较轻,有自主呼吸的患儿,不能提供呼气末正压,不能减少呼吸肌做功,因此病情较重,自主呼吸受限的早产儿往往使用正压通气。提供正压的方式也多种多样,例如,提供持续的高流量气体或气道正压,提供呼气末和吸气末正压,提供间歇的正压通气等,随着呼吸支持模式的增多,相关研究也越来越多,目前更多的研究发现正压通气与FI的发生无关。AMENDOLIA等[8]在比较使用CPAP和HFNC的早产儿中发现两组早产儿发生FI的概率差异无统计学意义,另一项随机对照研究也证实了使用HFNC和NCPAP的早产儿具有相同的达到全肠内喂养时间[29]。ALY等[30]回顾性分析了两家医疗机构使用CPAP和气管插管机械通气的早产儿资料,结果显示与气管插管机械通气相比,CPAP的使用并不增加NEC的发生。LEMYRE等[12]的综述研究提示NIPPV似乎与胃肠道副作用的增加无关。另一随机对照试验也证实与NCPAP相比,使用BIPAP的早产儿发生NEC的概率差异无统计学意义[15]。这可能与给氧的鼻塞与早产儿更为适配,以及呼吸机不断改进后可根据早产儿情况进行个性化模式调整有关。
本研究中共纳入6种呼吸支持模式,从简单的常压吸氧,到NCPAP、HFNC、BIPAP、NIPPV无创通气,再到侵入性的有创通气,利用未调整和调整的logistic回归分析依次对比5种呼吸支持模式(NIPPV例数太少未参与统计分析)与FI的关系,从回归分析的结果可知,所有调整后的logistic回归分析结果P值均大于0.05,差异无统计学意义。但本研究样本量较小,P值不能作为唯一的判断标准,从效应值来看,经过调整混杂因素后,对比常压吸氧,HFNC 可能是FI的保护性因素(OR=0.53,95%CI:0.06~4.77),而NCPAP(OR=1.22,95%CI:0.32~4.74)、BIPAP(OR=1.60,95%CI:0.42~6.06)和有创通气(OR=2.10,95%CI:0.45~9.77)可能是FI的危险因素;对比HFNC,NCPAP、BIPAP和有创通气均可能为FI的危险因素,且调整后效应值均增大,说明混杂因素的存在掩盖了NCPAP、BIPAP和有创通气对FI的危险性;对比NCPAP,BIPAP(OR=1.31,95%CI:0.67~2.55)和有创通气(OR=1.69,95%CI:0.65~4.41)的使用也可能增加FI发生的概率,调整后效应值减小说明混杂因素的存在夸大了BIPAP和有创通气对FI的危险性;对比BIPAP和有创通气,发现两者发生FI的概率可能相当(OR=1.00,95%CI:0.41~2.42)。
综上,针对早产儿FI,HFNC可能是最安全的呼吸支持模式,甚至比使用常压吸氧有更低的FI发生概率,可能是因为HFNC较常压吸氧更为稳定,可以提供恒定的常压吸氧浓度、恒定温度和湿度的高流量气体,因此在早产儿需要氧疗时,如果需要同时考虑促进早产儿肠内喂养,可优先选择更为高级的HFNC模式。其余呼吸支持模式如NCPAP、BIPAP和有创通气均可能增加FI的发生概率,这可能与早产儿的自主呼吸及呼吸机的呼气末正压支持有关,故临床医生在使用上述呼吸模式时,除了关注早产儿肺部情况的变化,也需要密切关注早产儿的胃肠道功能变化,做好肠内喂养管理,根据肠氧、肠血流等检测评估进行奶量调整,警惕FI的发生。
但本研究是一个回顾性观察研究,虽已尽量减少了观察偏倚,但缺失的数据难以避免。在数据采集过程中,若患儿住院期间使用多种呼吸支持技术,仅记录使用后发生FI的呼吸支持方式,若患儿没有发生FI则记录第一次使用的呼吸支持技术,可能会遗漏部分未引起FI发生的呼吸支持数据,拟在未来的研究中进一步完善;另外,本研究是单中心的研究,样本数也较少,在2015–2018年期间该中心可使用NIPPV模式的呼吸机较少,因此仅采集到2例使用NIPPV的早产儿,在logistic回归分析中将其排除,未能探索NIPPV与各呼吸支持模式之间的关系。因此,未来还需要更大样本量、多中心前瞻性临床试验进行NIPPV与其他无创呼吸模式对FI发生的验证。
* * *
作者贡献声明 张婷负责论文构思、数据审编、正式分析、调查研究、研究方法、软件和初稿写作,冯艺和胡勇负责数据审编、调查研究、研究项目管理和验证,应俊杰负责经费获取、提供资源、监督指导和审读与编辑写作,王少璞负责经费获取、提供资源、验证和审读与编辑写作,王华负责论文构思、经费获取、研究方法、研究项目管理、提供资源、监督指导和审读与编辑写作。所有作者已经同意将文章提交给本刊,且对将要发表的版本进行最终定稿,并同意对工作的所有方面负责。
利益冲突 所有作者均声明不存在利益冲突
-
表 1 使用不同呼吸支持模式的早产儿的临床特征和母亲孕期情况
Table 1 General data of maternal pregnancy and the clinical characteristics of the infants by different modes of respiratory support
Characteristic Normobaric oxygen (n=14) HFNC (n=7) NCPAP (n=68) BIPAP (n=119) Invasive ventilation (n=62) P Sex/case (%) 0.85 Female 7 (50.00) 2 (28.57) 25 (36.76) 49 (41.18) 24 (38.71) Male 7 (50.00) 5 (71.43) 43 (63.24) 70 (58.82) 38 (61.29) GA/yr. 31.41±1.65 30.00±0.75 30.44±1.47 29.99±1.67 28.42±1.61 <0.01 BW/g 1341.54±158.58 1260.00±190.61 1354.41±221.86 1321.69±228.25 1140.32±307.97 <0.01 Apgar 5 9.79±0.43 9.29±1.11 9.63±0.60 9.21±0.99 8.05±1.85 <0.01 Multiparity/case (%) 9 (64.29) 6 (85.71) 38 (55.88) 52 (43.70) 41 (66.13) 0.02 Placental abruption/case (%) 0 (0.00) 0 (0.00) 1 (1.47) 7 (5.88) 4 (6.45) 0.47 PROM/case (%) 7 (50.00) 4 (57.14) 31 (45.59) 52 (43.70) 25 (40.32) 0.89 Gestational diabetes mellitus/case (%) 3 (21.43) 1 (14.29) 15 (22.06) 28 (23.53) 11 (17.74) 0.90 Severe preeclampsia/case (%) 1 (7.14) 0 (0.00) 7 (10.29) 12 (10.08) 2 (3.23) 0.45 Glucocorticoid/
case (%)9 (81.82) 3 (100.0) 47 (85.45) 77 (86.52) 48 (92.31) 0.71 Admission temperature/℃ 36.21±0.50 35.99±0.34 36.20±0.44 36.23±0.71 36.15±0.53 0.24 Caffeine/case (%) 7 (50.00) 6 (85.71) 44 (64.71) 107 (89.92) 59 (95.16) <0.01 PS/case (%) 1 (7.14) 3 (42.86) 38 (55.88) 75 (63.03) 57 (91.94) <0.01 Apnea/case (%) 8 (57.14) 5 (71.43) 24 (35.29) 62 (52.10) 46 (74.19) <0.01 ABO/case (%) 1 (7.14) 0 (0.00) 2 (2.94) 3 (2.52) 2 (3.23) 0.89 Anemia/case (%) 7 (50.00) 3 (42.86) 32 (47.06) 72 (60.50) 55 (88.71) <0.01 PDA/case (%) 0 (0.00) 3 (42.86) 3 (4.41) 7 (5.88) 8 (12.90) <0.01 GA: gestational age; BW: birth weight; PROM: premature rupture of membranes; PS: pulmonary surfactant; ABO: ABO blood group incompatibility; PDA: patent ductus arteriosus; HFNC: high flow nasal cannula; NCPAP: nasal continuous positive airway pressure; BIPAP: bilevel positive airway pressure. 表 2 logistic回归分析常压吸氧对比其他呼吸支持模式与FI的关系
Table 2 Logistic regression of the association between other respiratory support modes, in comparison with normobaric oxygen, and FI
Mode n OR (95% CI)
unadjustedOR (95% CI)
adjustedNormobaric oxygen 14 1.0 1.0 HFNC 7 1.00 (0.16-6.26) 0.53 (0.06-4.77) NCPAP 68 1.19 (0.37-3.78) 1.22 (0.32-4.74) BIPAP 119 1.90 (0 .62-5.84) 1.60 (0.42-6.06) Invasive ventilation 62 3.26 (0.99-10.74) 2.10 (0.45-9.77) OR: odds ratio; CI: confidence interval; the other abbreviations are explained in the note to Table 1. The results were adjusted for glucocorticoid, gestational age, birth weight, polyembryony, Apgar 5, PS, apnea, admission temperature, and PDA. 表 3 logistic回归分析HFNC对比其他呼吸支持模式与FI的关系
Table 3 Logistic regression of the association between HFNC, in comparison with other respiratory support modes, and FI
Mode n OR (95% CI)
unadjustedOR (95% CI)
adjustedHFNC 7 1.0 1.0 NCPAP 68 1.19 (0.25-5.70) 2.33 (0.35-15.53) BIPAP 119 1.90 (0.41-8.89) 3.13 (0.48-20.25) Invasive ventilation 62 3.26 (0.66-16.05) 4.19 (0.59-29.61) OR and CI denote the same as those in Table 2; the other abbreviations are explained in the note to Table 1. The results were adjusted for glucocorticoid, gestational age, birth weight, polyembryony, Apgar 5, PS, apnea, admission temperature, and PDA. 表 4 logistic回归分析NCPAP对比其他呼吸支持模式与FI的关系
Table 4 Logistic regression of the association between NCPAP, in comparison with other respiratory support modes, and FI
Mode n OR (95% CI)
unadjustedOR (95% CI)
adjustedNCPAP 68 1.0 1.0 BIPAP 119 1.61 (0.88-2.93) 1.31 (0.67-2.55) Invasive ventilation 62 2.75 (1.33-5.69) 1.69 (0.65-4.41) OR and CI denote the same as those in Table 2; the other abbreviations are explained in the note to Table 1. The results were adjusted for glucocorticoid, gestational age, birth weight, polyembryony, Apgar 5, PS, apnea, admission temperature, and PDA. 表 5 logistic回归分析BIPAP对比有创通气与FI的关系
Table 5 Logistic regression of the association between BIPAP, in comparison with invasive ventilation, and FI
Mode n OR (95% CI) of
unadjustedOR (95% CI) of
adjustedBIPAP 119 1.0 1.0 Invasive ventilation 62 1.71 (0.89-3.31) 1.00 (0.41-2.42) OR and CI denote the same as those in Table 2; BIPAP denotes the same as that in Table 1. The results were adjusted for glucocorticoid, gestational age, birth weight, polyembryony, Apgar 5, PS, apnea, admission temperature, and PDA. -
[1] SWEET D G, CARNIELLI V P, GREISEN G, et al. European Consensus Guidelines on the management of respiratory distress syndrome: 2022 update. Neonatology,2023,120(1): 3–23. DOI: 10.1159/000528914
[2] MAHMOUD R A, SCHMALISCH G, OSWAL A, et al. Non-invasive ventilatory support in neonates: an evidence-based update. Paediatr Respir Rev,2022,44: 11–18. DOI: 10.1016/j.prrv.2022.09.001
[3] HO J J, SUBRAMANIAM P, DAVIS P G. Continuous positive airway pressure (CPAP) for respiratory distress in preterm infants. Cochrane Database Syst Rev,2020,10(10): CD002271. DOI: 10.1002/14651858.CD002271.pub3
[4] BRANSON R, DICHTER J R, FELDMAN H, et al. The US strategic national stockpile ventilators in coronavirus disease 2019: a comparison of functionality and analysis regarding the emergency purchase of 200, 000 devices. Chest,2021,159(2): 634–652. DOI: 10.1016/j.chest.2020.09.085
[5] ZHANG T, LUO H, WANG H, et al. Association of human milk fortifier and feeding intolerance in preterm infants: a cohort study about fortification strategies in Southwest China. Nutrients,2022,14(21): 4610. DOI: 10.3390/nu14214610
[6] SANCAK S, GURSOY T, TUTEN A, et al. A pioneering study: oral clarithromycin treatment for feeding intolerance in very low birth weight preterm infants. J Matern Fetal Neonatal Med,2018,31(8): 988–992. DOI: 10.1080/14767058.2017.1304908
[7] SABOUTE M, MAZOURI A, NAIMIDEHNAVI F, et al. Influence of high-dose oral erythromycin on feeding intolerance in preterm neonates: a randomized controlled trial. Med J Islam Repub Iran,2018,32: 9. DOI: 10.18869/mjiri.32.9
[8] AMENDOLIA B, FISHER K, WITTMANN-PRICE R A, et al. Feeding tolerance in preterm infants on noninvasive respiratory support. J Perinat Neonatal Nurs,2014,28(4): 300–304. DOI: 10.1097/JPN.0000000000000063
[9] CRESI F, MAGGIORA E, BORGIONE S M, et al. Enteral Nutrition Tolerance And REspiratory Support (ENTARES) Study in preterm infants: study protocol for a randomized controlled trial. Trials,2019,20(1): 67. DOI: 10.1186/s13063-018-3119-0
[10] BOZZETTI V, De ANGELIS C, TAGLIABUE P E. Nutritional approach to preterm infants on noninvasive ventilation: an update. Nutrition,2017,37: 14–17. DOI: 10.1016/j.nut.2016.12.010
[11] GANE B, BHAT B V, ADHISIVAM B, et al. Risk factors and outcome in neonatal necrotising enterocolitis. Indian J Pediatr,2014,81(5): 425–428. DOI: 10.1007/s12098-013-1311-5
[12] LEMYRE B, DAVIS P G, De PAOLI A G, et al. Nasal intermittent positive pressure ventilation (NIPPV) versus nasal continuous positive airway pressure (NCPAP) for preterm neonates after extubation. Cochrane Database Syst Rev,2017,2(2): Cd003212. DOI: 10.1002/14651858.CD003212.pub3
[13] SETH S, SAHA B, SAHA A K, et al. Nasal HFOV versus nasal IPPV as a post-extubation respiratory support in preterm infants--a randomised controlled trial. Eur J Pediatr,2021,180(10): 3151–3160. DOI: 10.1007/s00431-021-04084-1
[14] BEHNKE J, ESTREICH V, OEHMKE F, et al. Compatibility of rapid enteral feeding advances and noninvasive ventilation in preterm infants--an observational study. Pediatr Pulmonol,2022,57(5): 1117–1126. DOI: 10.1002/ppul.25868
[15] PAN R, CHEN G Y, WANG J, et al. Bi-level nasal positive airway pressure (BiPAP) versus nasal continuous positive airway pressure (CPAP) for preterm infants with birth weight less than 1500 g and respiratory distress syndrome following INSURE treatment: a two-center randomized controlled trial. Curr Med Sci,2021,41(3): 542–547. DOI: 10.1007/s11596-021-2372-8
[16] SELALMAZ M, UYSAL G, ZUBARIOGLU U, et al. The effect of intermittent and continuous feeding on growth and discharge time in very low birth weight preterm infants. Med B Sisli Etfal Ho,2021,55(1): 115–121. DOI: 10.14744/Semb.2020.31549
[17] 黄希, 陈琼, 罗碧如, 等. 喂养不耐受早产儿脐带血与尿中8-OHdG和皮质醇水平分析. 四川大学学报(医学版),2018,49(4): 631–634. DOI: 10.13464/j.scuxbyxb.2018.04.028 [18] 黄希, 陈琼, 彭文涛. 早产儿喂养不耐受的临床特征及其危险因素. 中南大学学报(医学版),2018,43(7): 797–804. DOI: 10.11817/j.issn.1672-7347.2018.07.016 [19] PENG H B, HU C, DENG W S, et al. Incubation period, clinical and lung CT features for early prediction of COVID-19 deterioration: development and internal verification of a risk model. BMC Pulm Med,2022,22(1): 188. DOI: 10.1186/s12890-022-01986-0
[20] GRIFFIN K, CSIZMADI I, HOWARD L E, et al. First-year weight loss with androgen-deprivation therapy increases risks of prostate cancer progression and prostate cancer-specific mortality: results from SEARCH. Cancer Cause Control,2019,30(3): 259–269. DOI: 10.1007/s10552-019-1133-5
[21] MALIKIWI A I, LEE Y M, DAVIES-TUCK M, et al. Postnatal nutritional deficit is an independent predictor of bronchopulmonary dysplasia among extremely premature infants born at or less than 28 weeks gestation. Early Hum Dev,2019,131: 29–35. DOI: 10.1016/j.earlhumdev.2019.02.005
[22] JAILE J C, LEVIN T, WUNG J T, et al. Benign gaseous distension of the bowel in premature infants treated with nasal continuous airway pressure: a study of contributing factors. AJR Am J Roentgenol,1992,158(1): 125–127. DOI: 10.2214/ajr.158.1.1727337
[23] TYAGI P, GUPTA N, JAIN A, et al. Intra-gastric pressures in neonates receiving bubble CPAP. Indian J Pediatr,2015,82(2): 131–135. DOI: 10.1007/s12098-014-1545-x
[24] GOUNARIS A, COSTALOS C, VARCHALAMA L, et al. Gastric emptying in very-low-birth-weight infants treated with nasal continuous positive airway pressure. J Pediatr,2004,145(4): 508–510. DOI: 10.1016/j.jpeds.2004.06.030
[25] HAVRANEK T, MADRAMOOTOO C, CARVER J D. Nasal continuous positive airway pressure affects pre- and postprandial intestinal blood flow velocity in preterm infants. J Perinatol,2007,27(11): 704–708. DOI: 10.1038/sj.jp.7211808
[26] ALY H, MASSARO A N, PATEL K, et al. Is it safer to intubate premature infants in the delivery room? Pediatrics,2005,115(6): 1660–1665. DOI: 10.1542/peds.2004-2493
[27] ALY H, MILNER J D, PATEL K, et al. Does the experience with the use of nasal continuous positive airway pressure improve over time in extremely low birth weight infants? Pediatrics,2004,114(3): 697–702. DOI: 10.1542/peds.2003-0572-L
[28] MEYER M, MILDENHALL L, WONG M. Outcomes for infants weighing less than 1000 grams cared for with a nasal continuous positive airway pressure-based strategy. J Paediatr Child Health,2004,40(1/2): 38–41. DOI: 10.1111/j.1440-1754.2004.00287.x
[29] GLACKIN S J, O'SULLIVAN A, GEORGE S, et al. High flow nasal cannula versus NCPAP, duration to full oral feeds in preterm infants: a randomised controlled trial. Arch Dis Child Fetal Neonatal Ed,2017,102(4): F329–F332. DOI: 10.1136/archdischild-2016-311388
[30] ALY H, MASSARO A N, HAMMAD T A, et al. Early nasal continuous positive airway pressure and necrotizing enterocolitis in preterm infants. Pediatrics,2009,124(1): 205–210. DOI: 10.1542/peds.2008-2588
-
期刊类型引用(2)
1. 付芬芬,王瑾,李文丽,杨洁,曹云,袁琳,周文俊,徐发林. 中国新生儿协作网重症监护病房出生胎龄<32周早产儿达全肠喂养时间分析. 中华儿科杂志. 2025(04): 379-386 . 百度学术
2. 盛文红,付芳,邓秋燕. NICU机械通气早产儿喂养不耐受发生现状及其影响因素分析. 青岛医药卫生. 2024(04): 285-289 . 百度学术
其他类型引用(2)

开放获取 本文遵循知识共享署名—非商业性使用4.0国际许可协议(CC BY-NC 4.0),允许第三方对本刊发表的论文自由共享(即在任何媒介以任何形式复制、发行原文)、演绎(即修改、转换或以原文为基础进行创作),必须给出适当的署名,提供指向本文许可协议的链接,同时标明是否对原文作了修改;不得将本文用于商业目的。CC BY-NC 4.0许可协议详情请访问 https://creativecommons.org/licenses/by-nc/4.0