mRNA Expression Profile Changes in Angiotensin-Ⅱ-Induced Atrial Myocardial Fibrosis in Rats
-
摘要:目的 研究血管紧张素Ⅱ(Ang Ⅱ)诱导的大鼠纤维化心肌细胞与正常大鼠心肌细胞mRNA表达谱之间的差异及其相关信号通路。方法 8周龄雄性SD大鼠6只,随机分为对照组(Control组)和Ang Ⅱ组,每组3只。Control组每日经尾静脉注射生理盐水,Ang Ⅱ组则注射2 mg/kg的Ang Ⅱ,两组持续给药14 d。采用Masson染色法检测大鼠心肌纤维化程度,免疫组化法检测胶原蛋白Ⅰ含量。利用高通量测序技术检测两组大鼠心肌细胞mRNA的表达并筛选出差异mRNA,进行GO分析和KEGG通路分析。结果 与Control组相比,Ang Ⅱ组的心肌纤维化程度及胶原蛋白Ⅰ含量升高(P<0.05)。进行测序后共筛选出313条差异mRNA(其中201条上调,112条下调)。GO和KEGG分析表明上述差异表达的mRNA参与了心肌纤维化的多种生物学调节功能和通路。结论 Ang Ⅱ可以导致大鼠心肌发生纤维化;纤维化的心肌细胞与正常心肌细胞之间的mRNA表达具有明显差异,差异表达的mRNA在免疫反应、细胞重构、细胞外基质沉积等生物过程中可能发挥重要作用。Abstract:Objective To study the differences between the mRNA expression profile in angiotensin Ⅱ (Ang Ⅱ)-induced fibrotic cardiomyocytes and that of normal cardiomyocytes and the relevant signaling pathways.Methods Six 8-week-old male Sprague-Dawley (SD) rats were randomly assigned to a control group and an Ang Ⅱ group, with 3 rats in each group. Rats in the control group were injected via caudal vein with 0.9% normal saline at 2 mg/kg per day, while rats in the Ang Ⅱ group were injected with Ang Ⅱ via caudal vein at 2 mg/kg per day. The medications were continuously administered in the two groups for 14 days. The degree of myocardial fibrosis was determined by Masson's Trichrome staining and the content of collagen Ⅰ was determined by immunohistochemistry. High throughput sequencing was performed to measure the mRNA expression of rat cardiomyocytes in the two groups and to screen for differentially-expressed mRNAs. The differentially-expressed mRNAs were analyzed by Gene Ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis.Results Compared with those of the control group, the degree of myocardial fibrosis and the content of collagen Ⅰ in Ang Ⅱ group were significantly higher (P<0.05). Through sequencing, 313 differentially-expressed mRNAs were identified, with 201 being up-regulated and 112 being down-regulated. Go and KEGG analyses showed that these differentially-expressed mRNA were involved in a variety of biological regulatory functions and pathways of myocardial fibrosis.Conclusion Ang Ⅱ can cause myocardial fibrosis in rats. There are significant differences in mRNA expression between fibrotic cardiomyocytes and normal cardiomyocytes. The differentially expressed mRNAs may play an important role in biological processes, including immune response, cell remodeling, and extracellular matrix deposition.
-
Keywords:
- Angiotensin Ⅱ /
- Myocardioal fibrosis /
- mRNA
-
心血管疾病是中国人口的主要死亡原因之一,而心肌纤维化是各类心血管疾病中导致心脏重构的重要病理过程。当心脏组织受到各种缺血缺氧、高血压等因素刺激时,会导致心肌细胞产生过量的胶原蛋白及过度的细胞外基质沉积,最终发生心肌纤维化。心肌纤维化不仅加速心血管疾病恶化进程,并且可能会影响心血管疾病药物治疗的疗效[1]。
肾素-血管紧张素-醛固酮系统是心血管功能的重要调节系统,其失调会诱发动脉粥样硬化、心室肥厚、心肌纤维化等病理过程。血管紧张素Ⅱ(angiotensin Ⅱ, Ang Ⅱ)是RAAS系统的关键组成部分,可调节免疫反应。过表达的Ang Ⅱ可以诱导心脏成纤维细胞的增殖和迁移,并导致基质蛋白沉积,促进心肌纤维化[2]。同时Ang Ⅱ还可以通过调节自噬、氧化应激、细胞凋亡等过程,加速心肌纤维化的发展[3]。而目前已有大量试验证实,抑制Ang Ⅱ的下游TGF-β1/Smad2信号通路可以有效减轻心肌纤维化[4-6],抑制心房颤动(atrial fibrillation, AF)等心血管疾病。
心肌纤维化发生发展涉及的病理生理过程复杂,目前仍未完全阐明。本研究通过建立Ang Ⅱ诱导的大鼠心肌纤维化模型,分析基因谱所富集的生物学过程及信号通路,为寻找心肌纤维化的治疗靶点及阐明心肌纤维化具体的发病机制提供指导。
1. 材料与方法
1.1 实验动物
实验动物8周龄SD 雄性大鼠6只,体质量(200±50) g,购自广西医科大学实验动物中心,执行号 SCXK ( Gui)2014-0003。在标准实验条件、室温20~25 ℃、湿度50%~60%和12 h光照/12 h黑暗的光周期下饲养。
1.2 主要试剂及仪器
抗体胶原蛋白-Ⅰ(Collagen-Ⅰ)由Abcam(上海)提供,二抗购自Beyotime(长沙),Ang Ⅱ和Masson 三色试剂盒购自Solarbio(北京),二抗购自Beyotime(长沙)。
1.3 实验分组及模型建立
将6只大鼠随机分对照(Control)组和Ang Ⅱ组,每组3只。Control组每日1次经尾静脉注射2 mg/kg的0.9%氯化钠注射液;Ang Ⅱ组每日1次经尾静脉注射2 mg/kg的Ang Ⅱ。各组连续给药14 d。
1.4 样本采集
14 d后在麻醉下迅速取出大鼠心脏并用PBS洗涤。剪取左心房组织并分为两部分分装,其一用体积分数为4%的多聚甲醛固定,进行Masson染色、免疫组化法检测;其一于−80 ℃冰箱保存,用于测序。
1.5 Masson染色观察大鼠心房肌纤维化程度
切片采用Masson三色染色法染色,并在光学显微镜(CKX41, Olympus, Tokyo, Japan)下观察。以×400观察样品,每个样品测试3个视野。结果用Image-Pro 6.0软件分析。
1.6 免疫组化分析Collagen-Ⅰ含量
使用Collagen-Ⅰ一抗(稀释至1∶150)将切片在4 ℃温育过夜。与一抗孵育后,切片在室温下洗涤3次,每次5 min,然后与二抗在室温下孵育2 h。在光学显微镜(CKX41, Olympus, Tokyo, Japan)下以×400观察样品,每个样品随机测试3个视野。结果用Image-Pro 6.0软件分析。
1.7 心房肌RNA高通量测序
采用miRNeasy Micro Kit试剂从大鼠心房肌组织中提取总RNA后进行纯化处理,并使用Bioanalyzer 4200对其进行完整度、纯度、 质量等的鉴定,合格后用VAHTS mRNA-seq v2 Library Prep Kit for Illumina®制备测序文库。对获得的文库使用Bioanalyzer 4200进行质量检测,达标后通过HiSeq X10系统中以150 bp的配对末端对文库进行测序。
1.8 差异表达mRNA分析
采用Limma R包对mRNA进行差异表达分析,通过差异倍数并取对数(log2 fold change, log2FC)获得差异mRNA,差异mRNA的定义为:|log2FC|>1且P<0.05。将log2FC>1.0定义为上调,log2FC<−1.0定义为下调。通过Cluster Profiler R包对差异表达的转录本进行基因本体(gene ontoloty, GO)分析和京都基因与基因组百科全书(kyoto encyclopedia of genes and genomes, KEGG)信号通路富集分析。GO分析是从生物学过程、细胞组分、分子功能3方面,对mRNA进行基因功能分析。
1.9 统计学方法
计量资料以
$\bar x\pm s $ 表示。资料符合正态分布、方差齐性,两组间比较采用t检验;资料符合正态分布、方差不齐,两组间比较用单因素方差分析,P<0.05为差异有统计学意义。2. 结果
2.1 Ang Ⅱ对大鼠心房肌细胞组织病理形态变化的影响
见图1。Control组大鼠心肌细胞排列整齐,心肌间质可见少许蓝色胶原纤维沉积;与Control组相比,Ang Ⅱ组大鼠心肌纤维化明显,心肌细胞间质可见明显大面积棕黄色Ⅰ型胶原纤维表达。与Control组(1.93%±0.65%)相比,Ang Ⅱ大鼠心肌间质胶原纤维化程度(10.67%±1.09%)增高,差异有统计学意义(P<0.01)。Ang Ⅱ组心肌细胞间质的Ⅰ型胶原纤维含量(5.04%±0.19%)增高,差异有统计学意义(P<0.01)。
2.2 mRNA表达谱分析
2.2.1 差异mRNA分析
通过R语言分析,筛选差异表达mRNA。共筛选出313个差异mRNA,其中201个上调,112个下调。
2.2.2 差异mRNA的GO分析
见表1、表2。分别对表达上调与表达下调的mRNA进行GO分析。结果显示,表达上调的差异mRNA功能主要富集于免疫、生物过程的正调控、压力反应、免疫应答、质膜部分、膜蛋白复合物、同一受体结合、抗原结合等方面。表达下调的差异mRNA功能主要富集于解剖结构发育、生物过程的正调控、细胞骨架组织、质膜部分、膜蛋白复合物、跨膜转运复合体、微管蛋白结合、微管结合等方面。
表 1 表达上调mRNA的GO分析Table 1. GO analysis of the up-regulated mRNAsTerm Count P Biological process Immune system process 93 1.06×10−20 Immune response 65 2.05×10−20 Regulation of immune system process 61 2.17×10−17 Antigen processing and presentation 19 9.61×10−15 Regulation of immune response 37 8.93×10−14 Antigen processing and presentation of
peptide antigen15 2.45×10−13 Positive regulation of immune system process 41 2.97×10−13 Immune effector process 39 4.33×10−13 Immune system process 93 1.06×10−20 Cellular component Cell surface 28 7.37×10−6 Plasma membrane protein complex 20 2.28×10−5 Plasma membrane part 52 <0.001 Membrane protein complex 27 0.002 Molecular function Receptor binding 32 0.011 Identical protein binding 28 0.020 Protein homodimerization activity 18 0.042 Kinase binding 17 0.011 Antigen binding 15 6.85×10−12 表 2 表达下调mRNA的GO分析Table 2. GO analysis of the down-regulated mRNAsTerm Count P Biological process Anatomical structure development 78 0.003 Positive regulation of biological process 68 0.033 Cell differentiation 53 0.014 Tissue development 29 0.018 Cell-cell signaling 27 <0.001 Cell adhesion 26 <0.001 Cytoskeleton organization 20 0.006 Positive regulation of cell differentiation 18 0.014 Regulation of anatomical structure morphogenesis 18 0.016 Cellular component Plasma membrane part 44 8.35×10−5 Cell junction 24 0.001 Plasma membrane protein complex 15 <0.001 Polymeric cytoskeletal fiber 11 0.037 Molecular function Inhibin binding 2 0.004 Fibronectin binding 2 0.038 Cation binding 45 0.044 2.2.3 差异mRNA的KEGG分析
见图2、图3。分别将上调及下调的差异mRNA进行KEGG分析。结果发现,表达上调的mRNA主要富集于病毒性心肌炎、1型糖尿病、T细胞受体信号通路、自然杀伤细胞介导的细胞毒性作用、抗原处理和呈递等信号转导通路。表达下调的mRNA主要富集于Wnt信号通路、Hippo信号通路、胰高血糖素信号通路、癌症通路等信号转导通路。
3. 讨论
心脏细胞的纤维化重塑可见于各类引起心脏泵血功能障碍的心血管疾病。细胞外基质(extracellular matrix, ECM)为心肌细胞的连接和心脏发挥泵血功能提供了稳定的纤维网络支架,Ⅰ型和Ⅲ型胶原蛋白是其中最主要的成分[7]。Ang Ⅱ可刺激心肌成纤维细胞使其产生胶原蛋白,而病理状态下大量的Ang Ⅱ会导致胶原蛋白的生成与降解失调,发生ECM的过量积累,最终形成心肌纤维化[8]。本研究显示,在过量Ang Ⅱ的作用下,大鼠心肌细胞的Ⅰ型胶原蛋白的含量显著上升,并且组织结构出现了明显的纤维化改变,表明了Ang Ⅱ可以通过增加ECM的积累促进心肌纤维化的发生。该方法诱导的大鼠心肌纤维化模型稳定性好、可重复性强。
通过对大鼠心肌细胞纤维化模型的差异表达mRNA进行富集分析,将有利于进一步探究心肌纤维化具体的发病机制。本研究对大鼠心肌纤维化中上调的mRNA进行GO分析功能注释和KEGG信号通路分析,结果显示上调差异mRNA的功能主要集中在免疫系统过程、免疫应答、免疫系统过程的调节等功能以及T细胞受体信号通路、自然杀伤细胞介导的细胞毒性、抗原处理和呈递等信号通路。Ang Ⅱ能够刺激心肌组织产生粒细胞集落刺激因子以增加中性粒细胞、巨噬细胞的募集,而心肌浸润的免疫细胞可以诱导炎症反应、氧化应激反应等,最终导致心肌纤维化[9]。同时过量的Ang Ⅱ也会引起大鼠心肌肥大细胞过度活化,通过分泌炎症介质的方式调节心肌细胞肥大和心肌纤维化[10]。表明免疫系统的激活在心肌纤维化发生发展中发挥着重要作用,对这些涉及免疫系统激活的mRNA进一步研究可能有助于为心肌纤维化提供新的治疗靶点。而在AF期间,免疫系统会发生显著的变化,产生免疫重塑,而免疫重塑参与AF的启动和维持过程,并与电重塑、结构重塑、神经重塑过程互相影响[11]。提示对免疫系统的干预可能可以通过抑制心肌纤维化,以阻碍房颤的发生及进展。
在对下调的大鼠心肌纤维化mRNA的GO分析及KEGG信号通路分析的结果表明,下调差异mRNA集中在解剖结构发育、细胞骨架组织、刺激反应的正向调节、跨膜转运复合体等功能和Wnt信号通路、Hippo信号通路等通路。Wnt信号通路的激活被认为是心肌纤维化的重要发病机制之一。当心肌组织受到缺氧、炎症等打击时可激活Wnt相关信号通路使心肌成纤维细胞活化,而心肌成纤维细胞通过产生ECM成分、蛋白水解酶及其抑制剂来控制ECM的更新,促进心肌纤维化[12]。Wnt/β-catenin通路是经典的Wnt信号转导通路,其可通过上调白介素-11、Smads家族蛋白等物质的表达来增强转化生长因子-β介导心肌成纤维细胞活化及增殖的能力[13-14]。同时,大量的β-catenin的会抑制Ang Ⅱ的降解,促进Ang Ⅱ诱导的心脏肥大和纤维化过程[15]。而本课题组前期的研究结果表明,Wnt/β-catenin通路的上调可以促进大鼠心肌纤维化和AF的发生[16]。提示Wnt可能是AF的治疗靶点,并且其效应可能与抑制心肌纤维化有关。Hippo信号转导通路在调控心肌细胞再生方面有着重要作用。肌钙蛋白细胞骨架是感知细胞外基质机械力学环境变化的主要细胞成分,当细胞外基质大量沉积时,可改变细胞机械特性,增加细胞之间的机械力,导致Hippo激酶信号传导失活,使未磷酸化的Yes相关蛋白(Yes-associated protein, YAP)和PDZ结合基序转录共激活因子(transcriptional co-activator with PDZ-binding motif, TAZ)在细胞核中积累,YAP/TAZ通过调节成纤维细胞增殖、肌成纤维细胞的转化等,促进心肌纤维化的发生[17]。FRANCISCO等[18]的研究结果显示,Ang Ⅱ本身亦可以刺激YAP的生成,并通过YAP促进梗死后的心脏功能障碍和纤维化。而MIA等[19]的研究证明,YAP/TAZ也可作用于Wnt信号通路的下游,发挥调节心脏成纤维细胞活化和纤维炎症反应的作用。而PAN等[20]在对比分析AF患者与正常人群血液中的差异表达miRNA的实验结果中,也发现Hippo通路参与了AF的发病。表明Hippo通路可能是通过影响心肌纤维化来参与AF的发生。本实验结果显示,细胞结构及细胞外基质的改变对心肌纤维化至关重要,对涉及这些改变的基因及信号通路进行更深入的研究有助于揭示心肌纤维化的具体发生机制。
本研究亦有不足之处。首先,大鼠样本数量较少,有待扩大样本量进行相关研究。其次,鉴于大鼠与人类之间存在基因组和生物学特性的差异,未来仍需采用人类患者样本进一步研究。
综上所述,本研究通过对Ang Ⅱ诱导的大鼠心肌纤维化的心肌细胞差异表达mRNA进行生物信息学分析,研究了其转录组学的改变及参与的信号通路,为进一步探究心肌纤维化的发生发展机制,寻找调控靶点提供了重要依据。
* * *
作者贡献声明 覃秋语负责论文构思、正式分析和初稿写作,吕祥威负责经费获取、提供资源和审读与编辑写作,何梓峰负责研究方法和软件,陈礼琴负责可视化和数据审编,路凤霞负责研究项目管理和监督指导,李于庭、黄宇莉和莫琪负责调查研究,徐华欣和吕菲负责验证。所有作者已经同意将文章提交给本刊,且对将要发表的版本进行最终定稿,并同意对工作的所有方面负责。
利益冲突 所有作者均声明不存在利益冲突
-
表 1 表达上调mRNA的GO分析
Table 1 GO analysis of the up-regulated mRNAs
Term Count P Biological process Immune system process 93 1.06×10−20 Immune response 65 2.05×10−20 Regulation of immune system process 61 2.17×10−17 Antigen processing and presentation 19 9.61×10−15 Regulation of immune response 37 8.93×10−14 Antigen processing and presentation of
peptide antigen15 2.45×10−13 Positive regulation of immune system process 41 2.97×10−13 Immune effector process 39 4.33×10−13 Immune system process 93 1.06×10−20 Cellular component Cell surface 28 7.37×10−6 Plasma membrane protein complex 20 2.28×10−5 Plasma membrane part 52 <0.001 Membrane protein complex 27 0.002 Molecular function Receptor binding 32 0.011 Identical protein binding 28 0.020 Protein homodimerization activity 18 0.042 Kinase binding 17 0.011 Antigen binding 15 6.85×10−12 表 2 表达下调mRNA的GO分析
Table 2 GO analysis of the down-regulated mRNAs
Term Count P Biological process Anatomical structure development 78 0.003 Positive regulation of biological process 68 0.033 Cell differentiation 53 0.014 Tissue development 29 0.018 Cell-cell signaling 27 <0.001 Cell adhesion 26 <0.001 Cytoskeleton organization 20 0.006 Positive regulation of cell differentiation 18 0.014 Regulation of anatomical structure morphogenesis 18 0.016 Cellular component Plasma membrane part 44 8.35×10−5 Cell junction 24 0.001 Plasma membrane protein complex 15 <0.001 Polymeric cytoskeletal fiber 11 0.037 Molecular function Inhibin binding 2 0.004 Fibronectin binding 2 0.038 Cation binding 45 0.044 -
[1] SOHNS C, MARROUCHE F N. Atrial fibrillation and cardiac fibrosis. Eur Heart J,2020,41(10): 1123–1131. DOI: 10.1093/eurheartj/ehz786
[2] XU J J, LI R J, ZHANG Z H, et al. Loganin inhibits angiotensin Ⅱ-induced cardiac hypertrophy through the JAK2/STAT3 and NF-κB signaling pathways. Front Pharmacol,2021,12: 678886. DOI: 10.3389/fphar.2021.678886
[3] CHEN Y M, WANG L, HUANG S X, et al. Lutein attenuates angiotensin Ⅱ-induced cardiac remodeling by inhibiting AP-1/IL-11 signaling. Redox Biol,2021,44: 102020. DOI: 10.1016/j.redox.2021.102020
[4] GE Z W, CHEN Y M, WANG B, et al. MFGE8 attenuates Ang-Ⅱ-induced atrial fibrosis and vulnerability to atrial fibrillation through inhibition of TGF-β1/Smad2/3 pathway. J Mol Cell Cardiol,2020,139: 164–175. DOI: 10.1016/j.yjmcc.2020.01.001
[5] LV W K, ZHANG L, CHENG X C, et al. Apelin inhibits angiotensin Ⅱ-induced atrial fibrosis and atrial fibrillation via TGF-β1/Smad2/α-SMA pathway. Front Physiol,2020,11: 583570. DOI: 10.3389/fphys.2020.583570
[6] HU J, ZHANG J J, LI L, et al. PU.1 inhibition attenuates atrial fibrosis and atrial fibrillation vulnerability induced by angiotensin-Ⅱ by reducing TGF-β1/Smads pathway activation. J Cell Mol Med,2021,25(14): 6746–6759. DOI: 10.1111/jcmm.16678
[7] COWLING T R, KUPSKY D, KAHN M A, et al. Mechanisms of cardiac collagen deposition in experimental models and human disease. Transl Res,2019,209: 138–155. DOI: 10.1016/j.trsl.2019.03.004
[8] HARIKRISHNAN V, TITUS S A, COWLING T R, et al. Collagen receptor cross-talk determines α-smooth muscle actin-dependent collagen gene expression in angiotensin Ⅱ–stimulated cardiac fibroblasts. J Biol Chem,2019,294(51): 19723–19739. DOI: 10.1074/jbc.RA119.009744
[9] JIANG H M, WANG H X, YANG H, et al. Role for granulocyte colony stimulating factor in angiotensin Ⅱ-induced neutrophil recruitment and cardiac fibrosis in mice. Am J Hypertens,2013,26(10): 1224–1233. DOI: 10.1093/ajh/hpt095
[10] JITMANA R, RAKSAPHARM S, KIJTAWORNRAT A, et al. Role of cardiac mast cells in exercise training-mediated cardiac remodeling in angiotensin Ⅱ-infused ovariectomized rats. Life Sci,2019,219: 209–218. DOI: 10.1016/j.lfs.2019.01.018
[11] YAO Y J, YANG M, LIU D S W, et al. Immune remodeling and atrial fibrillation. Front Physiol,2022,13: 927221. DOI: 10.3389/fphys.2022.927221
[12] DZIAŁO E, RUDNIK M, KONING I R, et al. WNT3a and WNT5a transported by exosomes activate WNT signaling pathways in human cardiac fibroblasts. Int J Mol Sci,2019,20(6): 1436. DOI: 10.3390/ijms20061436
[13] DZIAŁO E, CZEPIEL M, TKACZ K, et al. WNT/β-Catenin signaling promotes TGF-β-mediated activation of human cardiac fibroblasts by enhancing IL-11 production. Int J Mol Sci,2021,22(18): 10072. DOI: 10.3390/ijms221810072
[14] XU L, CUI W H, ZHOU W C, et al. Activation of Wnt/β-catenin signalling is required for TGF-β/Smad2/3 signalling during myofibroblast proliferation. J Cell Mol Med,2017,21(8): 1545–1554. DOI: 10.1111/jcmm.13085
[15] ZHAI C G, XU Y Y, TIE Y Y, et al. DKK3 overexpression attenuates cardiac hypertrophy and fibrosis in an angiotensin-perfused animal model by regulating the ADAM17/ACE2 and GSK-3β/β-catenin pathways. J Mol Cell Cardiol,2018,114: 243–252. DOI: 10.1016/j.yjmcc.2017.11.018
[16] LV X W, LI J Y, HU Y S, et al. Overexpression of miR-27b-3p targeting Wnt3a regulates the signaling pathway of Wnt/β-Catenin and attenuates atrial fibrosis in rats with atrial fibrillation. Oxid Med Cell Longev,2019,2019: 5703764. DOI: 10.1155/2019/5703764
[17] SMALL M E, BROOKS C A. Cut the YAP: limiting fibrosis in pathologic cardiac remodeling. JACC Basic Transl Sci,2020,5(9): 946–948. DOI: 10.1016/j.jacbts.2020.08.004
[18] FRANCISCO J, ZHANG Y, JEONG I J, et al. Blockade of fibroblast YAP attenuates cardiac fibrosis and dysfunction through MRTF-A inhibition. JACC Basic Transl Sci,2020,5(9): 931–945. DOI: 10.1016/j.jacbts.2020.07.009
[19] MIA M M, CIBI D M, GHANI S, et al. Loss of Yap/Taz in cardiac fibroblasts attenuates adverse remodelling and improves cardiac function. Cardiovasc Res,2021,2021: cvab205. DOI: 10.1093/cvr/cvab205
[20] PAN D F, ZHOU Y F, XIAO S J, et al. Identification of differentially expressed genes and pathways in human atrial fibrillation by bioinformatics analysis. Int J Gen Med,2022,15: 103–114. DOI: 10.2147/IJGM.S334122
-
期刊类型引用(1)
1. 胡雅婷,高原,伍华燕,梁俣,李晖,徐金东,刘宇鹏,单志新. CircSLC8A1_005通过编码蛋白抑制心肌成纤维细胞纤维化表型的作用. 中山大学学报(医学科学版). 2024(01): 35-44 . 百度学术
其他类型引用(0)

开放获取 本文遵循知识共享署名—非商业性使用4.0国际许可协议(CC BY-NC 4.0),允许第三方对本刊发表的论文自由共享(即在任何媒介以任何形式复制、发行原文)、演绎(即修改、转换或以原文为基础进行创作),必须给出适当的署名,提供指向本文许可协议的链接,同时标明是否对原文作了修改;不得将本文用于商业目的。CC BY-NC 4.0许可协议详情请访问 https://creativecommons.org/licenses/by-nc/4.0