Effect of the Interaction Between Overweight/Obesity and Dyslipidemia on the Risk of Hypertension in Tibetan Population Living in Tibet
-
摘要:目的 探讨超重/肥胖与血脂异常可能的交互作用,为高血压患病风险与超重/肥胖、血脂异常交互作用提供一定的证据。方法 采用多阶段分层整群随机抽样方法,在西藏阿里地区、那曲市和山南市随机抽取研究人群,共纳入了4047名数据完整的藏族居民为调查对象,通过问卷获取调查对象的相关信息,并进行身高、体质量指数、血压测量及采集空腹静脉血等。采用多因素逻辑回归模型分析超重/肥胖和血脂异常与高血压的独立效应,分层分析和相加交互作用模型评价两因素交互作用对高血压患病风险的影响。结果 西藏地区藏族居民高血压、超重/肥胖和血脂异常的总患病率分别为29.3%、46.2%和40.9%,超重/肥胖〔比值比(OR)=2.151 〕和血脂异常(OR=1.240)是高血压患病的危险因素。相加交互效应评价结果显示超重/肥胖和血脂异常对高血压的加法交互作用有统计学意义(P=0.028),协同指数为1.318。结论 超重/肥胖和血脂异常是高血压患病的危险因素,两因素间存在相加交互作用。Abstract:Objective To explore the possible interaction between overweight/obesity and dyslipidemia and to provide some evidence for the interaction of the risk of hypertension with overweight/obesity and dyslipidemia.Methods By using multi-stage stratified cluster random sampling method, the subjects of the study were randomly selected from Naqu city, Shannan city, and Ali prefecture, Tibet. A total of 4047 Tibetans with complete data were included. Investigators obtained relevant information on the subjects through questionnaire surveys, measured their height, body mass index, and blood pressure, and collected fasting venous blood samples. The multivariate logistic regression model was used to analyze the independent effects of overweight/obesity and dyslipidemia and hypertension. Stratified analysis and an additive interaction model were used to evaluate the effect of two-factor interaction on the risk of hypertension.Results The overall prevalence of hypertension, overweight/obesity, and dyslipidemia among Tibetans living in Tibet was 29.3%, 46.2%, and 40.9%, respectively. Overweight/obesity (odds ratio [OR]=2.151) and dyslipidemia (OR=1.240) were risk factors of hypertension. Evaluation results of the effect of additive interaction showed significant additive interaction of overweight/obesity and dyslipidemia on hypertension (P=0.028), with the synergy index (SI) being 1.318.Conclusion Overweight/obesity and dyslipidemia are risk factors for having hypertension and there is an additive interaction between dyslipidemia and overweight/obesity.
-
Keywords:
- Tibetan Population /
- Hypertension /
- Overweight/obesity /
- Dyslipidemia /
- Interaction
-
高血压作为一种由基因、环境、基因-基因、基因-环境的等多种因素引起的疾病,其中环境因素属于可改变的高危因素,及早预防控制,可以有效降低患高血压的风险。青藏高原平均海拔4000 m以上,空气稀薄,氧分压低,常居高原地区的藏族居民因其独特的地理环境和生活习惯,多以高脂、高蛋白、高能量、低纤维素的牛肉、糌粑、酥油等为食物,可能会导致体内各系统的结构和功能发生变化,机体的代谢发生紊乱。研究显示,高原地区藏族居民的多种慢性疾病患病率不同于其他区域人群[1-2]。作为心脑血管疾病的重要危险因素,超重/肥胖、血脂异常和高血压患病率的增加导致与其相关的心脑血管疾病死亡风险不断上升[3-4]。探究西藏地区高血压的危险因素并进行有效预防对于减轻公共卫生负担至关重要。
目前,大部分横断面研究关注风险因素与高血压患病之间的独立关系,包括吸烟、饮酒、超重/肥胖、血脂异常等因素,讨论各因素间存在的交互作用的研究较少,特别是在西藏地区。较少研究关于高原地区藏族人群超重/肥胖与血脂异常交互作用对高血压患病风险的影响,缺乏大样本的研究数据,这可能会造成对高血压患病风险的不完全解释。基于此,在西藏藏族人群中开展此研究,探讨超重/肥胖和血脂异常是否影响高血压患病,以及两因素间是否存在交互作用效应影响高血压患病,为西藏藏族人群的高血压等心血管疾病的早期相关防控工作提供依据。
1. 资料与方法
1.1 一般资料
2020–2021年,采用多阶段分层整群随机抽样的方法,在西藏阿里地区、那曲市和山南市,根据区县人口比例,每个市区抽取6个样本县,每个县中抽取2~3个自然村落中居住6个月以上的藏族常住居民为调查对象。纳入标准:年龄≥18岁、6个月以上的常住藏族居民。排除标准:年龄<18岁和>80岁、继发性高血压、患严重心脑血管疾病和严重肝肾功能不全、精神疾病者、怀孕和妊娠期女性。本研究经西藏大学医学伦理学委员会批准,所有调查对象均签署知情同意书。
1.2 方法
1.2.1 问卷调查
本次研究依托《西藏大学“一流学科”青藏高原藏族人群慢性病、地方病防治学科建设项目》项目开展面对面问卷调查。调查内容有一般人口学信息、生活方式、膳食模式、慢性病状况等。调查前已做预调查,并根据预调查结果对问卷内容进行了修正。调查均由熟练掌握藏汉双语并通过了专业培训的藏族人员完成。
1.2.2 血压测定
室内静坐休息15 min后,用欧姆龙医用型电子血压计(HEM-907)连续测量右上肢肱动脉血压3次后,取均值。
1.2.3 血液生化检查
禁食12 h后,空腹抽取静脉血5 mL,静置2 h后分离血清,后送至西藏自治区藏医院进行血液生化检查。使用全自动生化分析仪器(日立7600型)测量血脂全套、空腹血糖(FBG)和同型半胱氨酸(Hcy)等生化指标。
1.2.4 主要指标定义
高血压:收缩压(SBP)≥140 mmHg(1 mmHg=0.133 kPa)和/或舒张压(DBP)≥90 mmHg或使用降压药物或医生诊断、自我报告为高血压[5]。
超重/肥胖:体质量指数(BMI)在24.0~27.9 kg/m2为超重,BMI≥28 kg/m2为肥胖[6]。
血脂异常:血浆总胆固醇(TC)≥6.2 mmol/L、三酰甘油(TG)≥2.3 mmol/L、低密度脂蛋白胆固醇(LDL-C)≥4.1 mmol/L、高密度脂蛋白胆固醇(HDL-C)<1.0 mmol/L,符合以上指标任意一项或既往诊断为血脂异常的均判断为血脂异常[7]。
高同型半胱氨酸血症(HHcy):Hcy≥15 μmol/L[5]。
高血糖:空腹血糖(FBG)≥6.1 mmol/L[8]。
1.3 统计学方法
采用SPSS26.0进行数据的统计学处理分析。使用t检验、χ2或费舍尔确切概率法进行描述性分析;采用非条件逻辑回归计算超重/肥胖、血脂异常对患高血压的单独效应的比值比(OR)及其相应的95%可信区间(CI);运用分层分析探超重/肥胖-血脂异常交互作用的主要效应;采用交互作用相对超额风险(
relative excess risk due to interaction, RERI)、可归因比例(attributable proportion, AP)、协同指数(synergy index, SI)评估交互作用效应。采用双侧检验, P<0.05为差异有统计学意义。 2. 结果
2.1 基线特征
共纳入调查对象4047人。其中,患高血压男性占32.5%,女性占27%,平均年龄为(43.01±14.32)岁。高血压、超重/肥胖和血脂异常的患病率分别为29.3%、46.2%和40.9%。与无高血压患者相比,高血压患者的TC、TG、LDL-C、Hcy、SBP和DBP水平升高,更可能为男性、年龄较大、文化程度偏低、居住在农牧区(均为P<0.05),见表1。
表 1 调查对象的基线特征Table 1. Baseline data of the survey respondentsVariable Total/case or $ \bar x \pm s $ Hypertension/case (%) or $ \bar x \pm s $ χ2/t P No (n=2861) Yes (n=1186) Sex 13.947 0.001 Men 1688 1140 (67.5) 548 (32.5) Women 2359 1721 (73) 615 (27) Age/yr. 43.01±14.329 39.38±13.013 51.76±13.561 −26.737 <0.001 Type of residence 0.933 0.818 Cities and towns 237 170 (71.7) 67 (28.3) Rural area 2133 1515 (71.0) 618 (29.0) Pasturing area 1437 1012 (70.4) 425 (29.6) Farming and stockbreeding areas 240 164 (68.3) 76 (31.7) Highest education achieved 66.642 <0.001 Illiterate 2857 1935 (67.7) 922 (32.3) Primary school 586 423 (72.2) 163 (27.8) Junior middle school 231 192 (83.1) 39 (16.9) Senior middle school 104 92 (88.5) 12 (11.5) Vocational high school/technical school 37 27 (73) 10 (27) Junior college 126 97 (77) 29 (23) Bachelor degree or above 106 95 (89.6) 11 (10.4) Employment status 25.915 <0.001 Employed 1458 1076 (73.8) 382 (26.2) Retired 125 84 (67.2) 41 (32.8) Full-time equivalence 165 135 (81.8) 30 (18.2) Unemployed 98 62 (63.3) 36 (36.7) Farmers/herdsmen 2201 1504 (68.3) 697 (31.7) Marital status 63.373 <0.001 Never married 523 428 (81.8) 95 (18.2) Married 3418 2370 (69.3) 1048 (30.7) Widowhood 43 33 (76.7) 10 (23.3) Divorced 52 20 (38.5) 32 (61.5) Other 11 10 (90.9) 1 (9.1) Annual gross income/CNY 1.848 0.870 <12000 1068 765 (71.6) 303 (28.4) 12000-19999 1409 983 (69.8) 426 (30.2) 20000-59999 1343 952 (70.9) 391 (29.1) 60000-99999 93 66 (71) 27 (29) 100000-200000 80 59 (73.8) 21 (26.3) >200000 54 36 (66.7) 18 (33.3) Altitude 10.919 0.004 <4500 1483 1011 (68.2) 472 (31.8) 4500 1193 883 (74) 310 (26) >4500 1371 967 (70.5) 404 (29.5) Low income 0.076 0.783 No 1152 818 (71) 334 (29) Yes 2895 2043 (70.9) 852 (29.4) Insurance 0.016 0.900 No 125 89 (71.2) 36 (28.8) Yes 3922 2772 (70.7) 1150 (29.3) Physical exercise 13.569 0.009 Almost never 2555 1772 (69.4) 783 (30.6) <1 time/week 332 240 (72.3) 92 (27.7) 1-2 times/week 230 183 (79.6) 47 (20.4) 3-5 times/week 155 118 (76.1) 37 (23.9) Almost daily 775 548 (70.7) 227 (29.3) Smoking 20.107 <0.001 No smoking 402 293 (72.9) 109 (27.1) Quit smoking 174 97 (55.7) 77 (44.3) Smoking 3471 2471 (71.2) 1000 (28.8) Drinking 8.795 0.012 No drinking 507 353 (69.6) 154 (30.4) Quit drinking 157 95 (60.5) 62 (39.5) Drinking 3383 2413 (71.3) 970 (28.7) SBP/mmHg 122.51±20.724 113.99±11.456 143.08±23.464 40.744 <0.001 DBP/mmHg 80.53±13.417 74.76±8.459 94.45±12.942 48.171 <0.001 TC/(mmol/L) 5.54±2.121 5.41±1.849 5.86±2.635 5.493 <0.001 TG/(mmol/L) 1.08±0.770 1.01±0.715 1.25±0.864 8.601 <0.001 HDL-C/(mmol/L) 1.65±0.560 1.66±0.600 1.63±0.590 1.178 0.239 LDL-C/(mmol/L) 2.79±1.200 2.68±0.991 3.05±1.558 7.730 <0.001 Hcy/(μmol/L) 21.40±10.490 20.69±10.170 23.10±11.04 6.460 <0.001 Overweight/obesity 106.773 <0.001 No 2179 1748 (80.2) 431 (19.8) Yes 1868 1113 (59.6) 755 (40.4) HHcy 41.465 <0.001 No 946 744 (79.1) 197 (20.9) Yes 3101 2117 (68.2) 989 (31.8) Hyperglycemia 16.906 <0.001 No 3891 2773 (71.3) 1117 (28.7) Yes 156 88 (56.1) 69 (43.9) Dyslipidemia 44.243 <0.001 No 2391 1785 (74.7) 606 (25.3) Yes 1656 1076 (65) 580 (35) SBP: systolic blood pressure; DBP: diastolic blood pressure; TC: total cholesterol; TG: triglyceride; HDL-C: high-density lipoproteincholesterol; LDL-C: low-density lipoproteincholesterol; HHcy: hyperhomocysteinemia. 1 mmHg=0.133 kPa. 2.2 超重/肥胖、血脂异常与高血压的关联分析
以BMI<24 kg/m2或血脂正常人群作为对照,单因素回归分析结果表明,超重/肥胖、血脂异常与高血压患病风险均相关(P<0.01);调整协变量后,多因素logistic回归分析结果显示,超重/肥胖和血脂异常的西藏藏族人群高血压患病风险增加,其OR(95%CI)值分别为2.151(1.846~2.506)和1.240(1.063~1.447),见表2。
表 2 超重/肥胖、血脂异常与高血压的关联分析Table 2. Relationship between overweight/obesity and dyslipidemia and hypertensionVariable Model 1 Model 2 Model 3 OR (95% CI) P OR (95% CI) P OR (95% CI) P Overweight/obesity No Ref Ref Yes 2.751 (2.391, 3.165) <0.001 2.514 (2.165, 2.918) <0.001 2.151 (1.846, 2.506) <0.001 Dyslipidemia No Ref Ref Yes 1.588 (1.385, 1.820) <0.001 1.330 (1.145, 1.544) <0.001 1.240 (1.063, 1.447) <0.001 Model 1 was not adjusted; Model 2 was adjusted for traditional risk factors such as age, gender, smoking, alcohol consumption, HHcy, dyslipidemia and hyperglycemia; Model was 3 fully adjusted for confounding factors such as age, gender, educational level, employment, marital status, altitude, smoking and drinking. 2.3 超重/肥胖、血脂异常与高血压患病的相加交互作用
分层分析结果显示超重/肥胖与血脂异常对高血压患病风险有显著的交互作用,超重/肥胖和血脂异常两者联合OR为3.9(95%CI:2.3~3.6),大于非超重/肥胖和非血脂异常人群。经调整后,两因素存在相加交互作用,同时存在时患高血压的风险高于单独存在时的高血压风险之和(RERI=0.7,95%CI: 0.140~1.240),协同效应是两因素单独存在产生效应之和的1.318倍(SI=1.318,95%CI: 1.438~2.571),并且有17.9%的风险归因于两因素同时存在的协同作用(API=0.179,95%CI: 0.036~0.318),见表3。
表 3 超重/肥胖、血脂异常对高血压的相加交互作用Table 3. Interaction effect of overweight/obesity and dyslipidemia on hypertensionVariable 1 Variable 2 Model 1 Model 2 OR (95% CI) P OR (95% CI) P Dyslipidemia Overweight/obesity No No Ref Ref Yes 1.8 (1.5, 2.3) <0.001 1.6 (1.3, 2.0) <0.001 Yes No 3.2 (2.6, 3.9) <0.001 2.6 (2.1, 3.2) <0.001 Yes 3.9 (3.3, 4.7) <0.001 3.9 (2.3, 3.6) <0.001 P 0.004 0.028 RERI 0.7 (0.140, 1.240)b API 0.179 (0.036, 0.318)b SI 1.318 (1.438, 2.571)b Model 1 was not adjusted; Model 2 was fully adjusted for confounding factors, including age, sex, education, employment, marital status, altitude, smoking, and drinking; b all came from additive interaction. 3. 讨论
本研究结果发现,西藏藏族人群高血压总患病率为29.3%,与既往报道的患病率相似[9-10]。超重/肥胖和血脂异常总患病率较高,为46.2%和40.9%,是影响当地藏族居民体质健康的重大问题。其中超重/肥胖人群的高血压患病率显著高于非超重/肥胖人群,高于以往研究报道 [11-14],血脂异常率高于白玉县[15]和甘南地区[16]藏族成年人,这可能是研究人群地区差异所致,不同地区藏族人群经济发展、地区开放和生活环境改善不同。
许多研究发现超重/肥胖和血脂异常与高血压患病密切相关。体质量过度增加,尤其是与内脏脂肪增加相关的体质量增加,是高血压的主要危险因素,占原发性高血压风险的65%~75%[17]。弗雷明汉心脏研究的风险评估表明,男性78%和女性65%的原发性高血压可归因于体质量的过度增加[18]。超重/肥胖与高血压和血脂异常之间存在正相关[3-4]。
1991–2011年成人高血压超重/肥胖风险长期趋势分析表明,中国成年人高血压患病率的上升是超重/肥胖患病所致,其导致的高血压人群归因风险从27.1%增加到44.6%[19]。既往队列研究的证据表明,超重和肥胖与心血管病、癌症、2型糖尿病等慢性非传染性疾病[20-21]的发生和过早死亡风险增加密切相关。本研究中超重/肥胖会增加高血压患病风险,超重/肥胖患高血压的风险是非超重/肥胖的2.151倍。
多项研究[22-23]结果提示,血脂异常是高血压的危险因素。脂质分子可以影响到血管的弹性功能和结构,导致动脉血管的弹性、结构产生异常,进而引起收缩压或舒张压的升高。本研究中血脂异常人群高血压患病风险是血脂正常人群的1.240倍,提示血脂异常会增加西藏藏族人群高血压的患病概率[24]。
交互作用是两个或多个危险因素共同作用于某一疾病时的效应显著不同于该两个或多个危险因素单独作用时的和或积 [25]。HU等[26]发现华南地区超重人群的高血压患病率明显高于一般人群,更容易出现代谢综合征,血脂异常也会损害动脉内皮功能,从而更容易导致高血压等心血管疾病的发生。周雨芳[27]、TANG等[28]和SONG等[29]也发现高血压患病风险中,血脂异常与超重或肥胖之间有交互作用。本研究中同时患超重/肥胖和血脂异常者高血压的患病风险是两因素均正常时的3.9倍,协同效应是两因素单独存在效应之和的1.318倍。相关研究表明,超重/肥胖和血脂异常有几种常见的血压升高机制。例如,脂肪组织可以通过调节血浆相关水平和功能来维持正常的心血管功能,但其形态和功能的变化会影响血浆相关水平和功能,加速心血管疾病的发生发展[30]。两因素可能存在的协同作用提示在高血压的早期预防当中,控制体重和血脂可能会有效预防降低高血压的患病风险。
综上所述,西藏地区藏族人群高血压、血脂异常、超重/肥胖患病率处于较高水平,超重/肥胖和血脂异常是高血压患病的重要危险因素。由于肥胖与血脂水平之间密切的关联,应将超重/肥胖、血脂异常人群列为重点预防人群, 通过合理膳食、体育锻炼、临床治疗等方式控制。考虑到本次调查中近四分之三的成年人未受过正规教育,在高血压的早期预防和控制中,尽可能采取适合藏族有针对性的公共干预计划措施,以对降低高血压等心血管疾病的患病风险产生积极的作用。
本文研究超重/肥胖与血脂异常对高血压患病的交互作用,仍存在不足之处。一是作为横断面研究,无法进行因果推断;二是本研究中超重/肥胖与血脂异常的诊断标准考虑单一,临床指导意义有待提高。争取在下一步研究中增加超重/肥胖相关诊断指标及血脂异常类型,以便能够在当地开展更加具体化的健康教育,对有效降低高血压的患病风险具有重要的现实意义。
* * *
利益冲突 所有作者均声明不存在利益冲突
-
表 1 调查对象的基线特征
Table 1 Baseline data of the survey respondents
Variable Total/case or $ \bar x \pm s $ Hypertension/case (%) or $ \bar x \pm s $ χ2/t P No (n=2861) Yes (n=1186) Sex 13.947 0.001 Men 1688 1140 (67.5) 548 (32.5) Women 2359 1721 (73) 615 (27) Age/yr. 43.01±14.329 39.38±13.013 51.76±13.561 −26.737 <0.001 Type of residence 0.933 0.818 Cities and towns 237 170 (71.7) 67 (28.3) Rural area 2133 1515 (71.0) 618 (29.0) Pasturing area 1437 1012 (70.4) 425 (29.6) Farming and stockbreeding areas 240 164 (68.3) 76 (31.7) Highest education achieved 66.642 <0.001 Illiterate 2857 1935 (67.7) 922 (32.3) Primary school 586 423 (72.2) 163 (27.8) Junior middle school 231 192 (83.1) 39 (16.9) Senior middle school 104 92 (88.5) 12 (11.5) Vocational high school/technical school 37 27 (73) 10 (27) Junior college 126 97 (77) 29 (23) Bachelor degree or above 106 95 (89.6) 11 (10.4) Employment status 25.915 <0.001 Employed 1458 1076 (73.8) 382 (26.2) Retired 125 84 (67.2) 41 (32.8) Full-time equivalence 165 135 (81.8) 30 (18.2) Unemployed 98 62 (63.3) 36 (36.7) Farmers/herdsmen 2201 1504 (68.3) 697 (31.7) Marital status 63.373 <0.001 Never married 523 428 (81.8) 95 (18.2) Married 3418 2370 (69.3) 1048 (30.7) Widowhood 43 33 (76.7) 10 (23.3) Divorced 52 20 (38.5) 32 (61.5) Other 11 10 (90.9) 1 (9.1) Annual gross income/CNY 1.848 0.870 <12000 1068 765 (71.6) 303 (28.4) 12000-19999 1409 983 (69.8) 426 (30.2) 20000-59999 1343 952 (70.9) 391 (29.1) 60000-99999 93 66 (71) 27 (29) 100000-200000 80 59 (73.8) 21 (26.3) >200000 54 36 (66.7) 18 (33.3) Altitude 10.919 0.004 <4500 1483 1011 (68.2) 472 (31.8) 4500 1193 883 (74) 310 (26) >4500 1371 967 (70.5) 404 (29.5) Low income 0.076 0.783 No 1152 818 (71) 334 (29) Yes 2895 2043 (70.9) 852 (29.4) Insurance 0.016 0.900 No 125 89 (71.2) 36 (28.8) Yes 3922 2772 (70.7) 1150 (29.3) Physical exercise 13.569 0.009 Almost never 2555 1772 (69.4) 783 (30.6) <1 time/week 332 240 (72.3) 92 (27.7) 1-2 times/week 230 183 (79.6) 47 (20.4) 3-5 times/week 155 118 (76.1) 37 (23.9) Almost daily 775 548 (70.7) 227 (29.3) Smoking 20.107 <0.001 No smoking 402 293 (72.9) 109 (27.1) Quit smoking 174 97 (55.7) 77 (44.3) Smoking 3471 2471 (71.2) 1000 (28.8) Drinking 8.795 0.012 No drinking 507 353 (69.6) 154 (30.4) Quit drinking 157 95 (60.5) 62 (39.5) Drinking 3383 2413 (71.3) 970 (28.7) SBP/mmHg 122.51±20.724 113.99±11.456 143.08±23.464 40.744 <0.001 DBP/mmHg 80.53±13.417 74.76±8.459 94.45±12.942 48.171 <0.001 TC/(mmol/L) 5.54±2.121 5.41±1.849 5.86±2.635 5.493 <0.001 TG/(mmol/L) 1.08±0.770 1.01±0.715 1.25±0.864 8.601 <0.001 HDL-C/(mmol/L) 1.65±0.560 1.66±0.600 1.63±0.590 1.178 0.239 LDL-C/(mmol/L) 2.79±1.200 2.68±0.991 3.05±1.558 7.730 <0.001 Hcy/(μmol/L) 21.40±10.490 20.69±10.170 23.10±11.04 6.460 <0.001 Overweight/obesity 106.773 <0.001 No 2179 1748 (80.2) 431 (19.8) Yes 1868 1113 (59.6) 755 (40.4) HHcy 41.465 <0.001 No 946 744 (79.1) 197 (20.9) Yes 3101 2117 (68.2) 989 (31.8) Hyperglycemia 16.906 <0.001 No 3891 2773 (71.3) 1117 (28.7) Yes 156 88 (56.1) 69 (43.9) Dyslipidemia 44.243 <0.001 No 2391 1785 (74.7) 606 (25.3) Yes 1656 1076 (65) 580 (35) SBP: systolic blood pressure; DBP: diastolic blood pressure; TC: total cholesterol; TG: triglyceride; HDL-C: high-density lipoproteincholesterol; LDL-C: low-density lipoproteincholesterol; HHcy: hyperhomocysteinemia. 1 mmHg=0.133 kPa. 表 2 超重/肥胖、血脂异常与高血压的关联分析
Table 2 Relationship between overweight/obesity and dyslipidemia and hypertension
Variable Model 1 Model 2 Model 3 OR (95% CI) P OR (95% CI) P OR (95% CI) P Overweight/obesity No Ref Ref Yes 2.751 (2.391, 3.165) <0.001 2.514 (2.165, 2.918) <0.001 2.151 (1.846, 2.506) <0.001 Dyslipidemia No Ref Ref Yes 1.588 (1.385, 1.820) <0.001 1.330 (1.145, 1.544) <0.001 1.240 (1.063, 1.447) <0.001 Model 1 was not adjusted; Model 2 was adjusted for traditional risk factors such as age, gender, smoking, alcohol consumption, HHcy, dyslipidemia and hyperglycemia; Model was 3 fully adjusted for confounding factors such as age, gender, educational level, employment, marital status, altitude, smoking and drinking. 表 3 超重/肥胖、血脂异常对高血压的相加交互作用
Table 3 Interaction effect of overweight/obesity and dyslipidemia on hypertension
Variable 1 Variable 2 Model 1 Model 2 OR (95% CI) P OR (95% CI) P Dyslipidemia Overweight/obesity No No Ref Ref Yes 1.8 (1.5, 2.3) <0.001 1.6 (1.3, 2.0) <0.001 Yes No 3.2 (2.6, 3.9) <0.001 2.6 (2.1, 3.2) <0.001 Yes 3.9 (3.3, 4.7) <0.001 3.9 (2.3, 3.6) <0.001 P 0.004 0.028 RERI 0.7 (0.140, 1.240)b API 0.179 (0.036, 0.318)b SI 1.318 (1.438, 2.571)b Model 1 was not adjusted; Model 2 was fully adjusted for confounding factors, including age, sex, education, employment, marital status, altitude, smoking, and drinking; b all came from additive interaction. -
[1] 王晨霞, 何博, 马玉霞, 等. 中国藏族人群高血压患病率的系统回顾和荟萃分析. 中华高血压杂志,2020,28(9): 847–855. DOI: 10.16439/j.cnki.1673-7245.2020.09.014 [2] 张寒, 马利锋, 张致英, 等. 成年藏族居民高血压、脂肪肝和高尿酸血症分布特征: 基于拉萨某社区的调查. 环境与职业医学,2020,37(12): 1182–1187. DOI: 10.13213/j.cnki.jeom.2020.20308 [3] KOENEN M, HILL M A, COHEN P, et al. Obesity, adipose tissue and vascular dysfunction. Circ Res,2021,128(7): 951–968. DOI: 10.1161/CIRCRESAHA.121.318093.Epub2021Apr1
[4] KUWABARA M, KUWABARA R, NIWA K, et al. Different risk for hypertension, diabetes, dyslipidemia, and hyperuricemia according to level of body mass index in Japanese and American subjects. Nutrients,2018,10(8): 1011. DOI: 10.3390/nu10081011
[5] 中国高血压防治指南修订委员会, 高血压联盟, 中华医学会心血管病学分会中国医师协会高血压专业委员, 等. 中国高血压防治指南(2018年修订版). 中国心血管杂志,2019,24(1): 24–56. DOI: 10.3969/j.issn.1007-5410.2019.01.002 [6] 王友发, 孙明晓, 薛宏, 等. 《中国肥胖预防和控制蓝皮书》解读及中国肥胖预防控制措施建议. 中华预防医学杂志,2019(9): 875–884. DOI: 10.3760/cma.j.issn.0253-9624.2019.09.003 [7] 诸骏仁, 高润霖, 赵水平, 等. 中国成人血脂异常防治指南(2016年修订版). 中国循环杂志,2016,31(10): 937–953. DOI: 10.3969/j.issn.1000-3614.2016.10.001 [8] 王富军, 王文琦. 《中国2型糖尿病防治指南(2020年版)》解读. 河北医科大学学报,2021,42(12): 1365–1371. DOI: 10.3969/j.issn.1007-3205.2021.12.001 [9] WEN P, KE L, YAN F A, et al. Prevalence, management, and associated factors of obesity, hypertension, and diabetes in Tibetan population compared with China overall. Int J Environ Res Public Health,2022,19(14): 8787. DOI: 10.3390/ijerph19148787
[10] WARD Z J, BLEICH S N, CRADOCK A L, et al. Projected U. S. state-level prevalence of adult obesity and severe obesity. N Engl J Med,2019,381(25): 2440–2450. DOI: 10.1056/NEJMsa1909301
[11] 德吉, 白玛, 扎西顿珠. 西藏昂仁县高血压患病率、知晓率、治疗率和控制率的调查. 中国心血管杂志,2020,25(1): 62–66. DOI: 10.3969/j.issn.1007-5410.2020.01.014 [12] 汪金龙, 蔚宏, 陈泽涛, 等. 西藏林芝市常住居民高血压病流行病学调查分析. 暨南大学学报(自然科学与医学版),2020,41(3): 241–245. DOI: 10.11778/j.jdxb.2020.03.007 [13] 张琦, 李潇, 孙威风, 等. 甘肃省成人血脂异常患病率及其危险因素调查. 解放军医学杂志,2018,43(10): 882–889. DOI: 10.11855/j.issn.0577-7402.2018.10.13 [14] 李志栋,侯海生,王硕,等. 脂质蓄积指数与吸烟、失眠对高血压患病风险的影响. 遵义医科大学学报,2021,44(5): 641–647. DOI: 10.14169/j.cnki.zunyixuebao.2021.0101 [15] 伏小红, 冯宦翔, 苟伟, 等. 白玉县藏族成年人血糖血脂情况分析. 热带医学杂志,2020,20(8): 1040–1043. DOI: 10.3969/j.issn.1672-3619.2020.08.012 [16] 李星辉, 李丽, 乔燕, 等. 高海拔区藏族成年人群血脂异常流行特点分析. 中国循环杂志,2009,24(6): 458–460. DOI: 10.3969/j.issn.1000-3614.2009.06.016 [17] HALL J E, Do CARMO J M, Da SILVA A A, et al. Obesity-induced hypertension: interaction of neurohumoral and renal mechanisms. Circ Res,2015,116(6): 991–1006. DOI: 10.1161/CIRCRESAHA.116.305697
[18] GARRISON R J, KANNEL W B, STOKES J, 3rd, et al. Incidence and precursors of hypertension in young adults: the Framingham Offspring Study. Prev Med,1987,16(2): 235–251. DOI: 10.1016/0091-7435(87)90087-9
[19] GOU J, WU H. Secular trends of population attributable risk of overweight and obesity for hypertension among Chinese adults from 1991 to 2011. Sci Rep,2021,11(1): 6371. DOI: 10.1038/s41598-021-85794-2
[20] 许巍, 张行易, 路甲鹏, 等. 我国西北地区36万成人心血管病高危风险的特征. 西安交通大学学报(医学版),2021,42(5): 784–790. DOI: 10.7652/jdyxb202105024 [21] PAN X F, WANG L M, PAN A. Epidemiology and determinants of obesity in China. Lancet Diabetes Endocrinol,2021,9(6): 373–392. DOI: 10.1016/S2213-8587(21)00045-0
[22] MASILELA C, PEARCE B, ONGOLE J J, et al. Cross-sectional study of prevalence and determinants of uncontrolled hypertension among South African adult residents of Mkhondo municipality. BMC Public Health,2020,20(1): 1069. DOI: 10.1186/s12889-020-09174-7
[23] 李建彬, 刘建勋, 武恩平, 等. 郑州市成年居民高血压流行现状及危险因素分析. 现代预防医学,2020,47(12): 2263–2266. [24] 朱惠娟, 张文, 杜明, 等. 超重/肥胖及血脂异常与高血压患病的关联分析. 江苏预防医学,2021,32(2): 200–202. DOI: 10.13668/j.issn.1006-9070.2021.02.025 [25] 袁悦, 李楠, 任爱国, 等. 流行病学研究中相加和相乘尺度交互作用的分析. 现代预防医学,2015,42(6): 961–965. [26] HU L, HUANG X, YOU C, et al. Prevalence and risk factors of prehypertension and hypertension in Southern China. PLoS One,2017,12(1): e0170238. DOI: 10.1371/journal.pone.0170238
[27] 周雨芳. 肥胖、血脂异常及其交互作用对单纯舒张期高血压的影响. 沈阳: 中国医科大学, 2022. doi: 10.27652/d.cnki.gzyku.2022.001323. [28] TANG N, MA J, TAO R, et al. The effects of the interaction between BMI and dyslipidemia on hypertension in adults. Sci Rep,2022,12(1): 927. DOI: 10.1038/s41598-022-04968-8
[29] SONG J, NIE S M, CHEN X, et al. Association and interaction between triglyceride-glucose index and obesity on risk of hypertension in middle-aged and elderly adults. Clin Exp Hypertens,2017,39(8): 732–739. DOI: 10.1080/10641963.2017.1324477
[30] ZHANG T, CHEN J, TANG X, et al. Interaction between adipocytes and high-density lipoprotein: new insights into the mechanism of obesity-induced dyslipidemia and atherosclerosis. Lipids Health Dis,2019,18(1): 223. DOI: 10.1186/s12944-019-1170-9
-
期刊类型引用(1)
1. 李洋,周仲芳,欧阳永亮,黄子娟,杨思进,罗钢,刘炳. 饮酒与超重/肥胖交互作用对高血压患病风险的影响. 中华健康管理学杂志. 2025(03): 192-199 . 百度学术
其他类型引用(1)
计量
- 文章访问数: 519
- HTML全文浏览量: 219
- PDF下载量: 27
- 被引次数: 2