Abstract:
Metabolic reprogramming, an important hallmark of cancer, helps cancer achieve rapid proliferation. Metabolic changes in tumors regulate multiple metabolic pathways of immune cells, thereby suppressing antitumor immunity. Recent studies have been focused on in-depth investigation into the changes in the metabolism of glucose, amino acids, and lipids. Researchers have also conducted in-depth exploration of the interactive metabolic regulation of tumor cells and immune cells. Targeting various metabolic mechanisms while combining available anti-tumor therapies and enhancing the anti-tumor effects of immunotherapy by satisfying the metabolic demands of immune cells has offered new perspectives for therapies targeting the immune metabolism of tumors and enhancing anti-tumor immune responses. Studies on novel immune checkpoint molecules and cellular immunotherapies are also ongoing. Herein, we reviewed the latest findings on the mechanisms of immune metabolism underlying tumor immunosuppression and their application in immunotherapy. We also suggested some ideas for the future development of the regulation of immune metabolism.