欢迎来到《四川大学学报(医学版)》 2025年6月23日 星期一

低氧条件下小分子化合物VCR组合诱导大鼠成纤维细胞重编程神经前体细胞的实验研究

王圆圆, 孙婷婷, 杨盼, 徐佳佳, 梁宇, 吴凡, 马彩云, 王春景, 刘长青, 郭俣

王圆圆, 孙婷婷, 杨盼, 等. 低氧条件下小分子化合物VCR组合诱导大鼠成纤维细胞重编程神经前体细胞的实验研究[J]. 四川大学学报(医学版), 2022, 53(5): 790-797. DOI: 10.12182/20220960501
引用本文: 王圆圆, 孙婷婷, 杨盼, 等. 低氧条件下小分子化合物VCR组合诱导大鼠成纤维细胞重编程神经前体细胞的实验研究[J]. 四川大学学报(医学版), 2022, 53(5): 790-797. DOI: 10.12182/20220960501
WANG Yuan-yuan, SUN Ting-ting, YANG Pan, et al. VCR, a Small Molecule Compound, Induces Reprogramming of Rat Fibroblasts into Neural Progenitor Cells under Hypoxic Condition[J]. Journal of Sichuan University (Medical Sciences), 2022, 53(5): 790-797. DOI: 10.12182/20220960501
Citation: WANG Yuan-yuan, SUN Ting-ting, YANG Pan, et al. VCR, a Small Molecule Compound, Induces Reprogramming of Rat Fibroblasts into Neural Progenitor Cells under Hypoxic Condition[J]. Journal of Sichuan University (Medical Sciences), 2022, 53(5): 790-797. DOI: 10.12182/20220960501

低氧条件下小分子化合物VCR组合诱导大鼠成纤维细胞重编程神经前体细胞的实验研究

基金项目: 国家自然科学基金(No. 81771381),国家级大学生创新创业训练项目(No. 202010367015、No. 202110367044),安徽省自然科学基金(No. 1908085MH277),蚌埠医学院重大科技项目孵育计划(No. 2021byfy002)和蚌埠医学院研究生科研创新计划项目(No. Byycx20012)资助
详细信息
    通讯作者:

    郭俣: E-mail:guoyu@bbmc.edu.cn

VCR, a Small Molecule Compound, Induces Reprogramming of Rat Fibroblasts into Neural Progenitor Cells under Hypoxic Condition

More Information
  • 摘要:
      目的  探讨大鼠胚胎成纤维细胞(rat embryoic fibroblasts, REFs)在低氧条件下(5%O2)重编程为化学诱导大鼠神经前体细胞(chemically induced rat neural progenitor cells, ciRNPCs)的方法体系。
      方法   分两阶段将REFs重编程为ciRNPCs,第一阶段是化学诱导产生中间态细胞,REFs在低氧条件下采用含有小分子化合物的组合VCR(valproic acid、CHIR99021和 RepSox)和10000 U/mL白血病抑制因子(leukemia inhibitory factor, LIF)的KSR培养基培养15 d,观察到致密细胞集落即中间态细胞形成;第二阶段是特异性诱导ciRNPCs,用胰酶消化中间态细胞,接种至低黏附板,在常氧条件下可形成ciRNPCs神经球。CM-DiI标记后,定向移植至大鼠黑质-纹状体,通过免疫荧光检测ciRNPCs在宿主脑内存活、迁移及分化状况。
      结果   低氧诱导5~10 d时已观察到明显细胞聚集趋势,15 d时已形成聚集紧密的克隆,1×105个细胞中大约产生30个克隆,同时大部分细胞克隆碱性磷酸酶染色呈阳性,消化重铺后2 d即可观察到有神经胚球形成,并可表达神经前体细胞(neural progenitor cells, NPCs)表面特征性抗原(Nestin、Sox2和Pax6),而且具有向神经胶质细胞和神经元分化的能力,分别表达GFAP和Tuj1特异性标志物。移植8周后,大鼠脑内可分化为GFAP+和Tuj1+细胞。
      结论  小分子化合物VCR组合在低氧条件下可直接诱导REFs重编程为ciRNPCs,并具备体内与体外诱导分化为神经胶质细胞和神经元的潜能,为ciRNPCs移植治疗神经损伤疾病奠定基础。

     

    Abstract:
      Objective  To explore for a protocol for reprogramming rat embryonic fibroblasts (REFs) under hypoxic conditions (5% O2) to form chemically induced rat neural progenitor cells (ciRNPCs).
      Methods  The reprogramming of REFs into ciNPCs was done in two stages. The first stage involved chemical induction to generate intermediate cells. The REFs were cultured in KSR medium containing valproic acid, CHIR99021, and RepSox (VCR) and 10000 U/mL leukemia inhibitory factor (LIF) for 15 days, under a physiological hypoxic condition. The formation of dense cell colonies, i.e., intermediate cells, were observed. The second stage involved the specific induction of ciRNPCs. The induced intermediate cells were digested with trypsin, seeded on a low adhesion plate, and cultured under normoxic condition to form ciRNPCs neurospheres. Then, after CM-DiI cell-labeling, the ciRNPCs were stereotactically transplanted into the substantia nigra (SN) of rats. The survival, migration, and differentiation of ciRNPCs in the host brain were examined with immunofluorescence assays.
      Results  After induction under hypoxic condition for 5 to 10 days, a clear trend of cell aggregation was observed. Compact cell colonies were observed in REFs treated with VCR for 15 days under a hypoxic condition. Approximately 30 colonies emerged from 1×105 cells, and most colonies were positive for AP staining. Moreover, when these cells were cultured further in suspension, free-floating neurospheres formed and stained positive for neural progenitor cell (NPC) markers, including Nestin, Sox2 and Pax6. These ciRNPCs could differentiate into glial cells and neurons, and express neurite marker Tuj1 and astrocyte marker GFAP. Eight weeks after transplantation, the cells could differentiate into GFAP+ and Tuj1+ cells in the rat brain.
      Conclusion  Our study demonstrates that VCR, a small molecule compound, can directly induce, under a hypoxic condition, the reprogramming of REFs to form ciRNPCs with the potential to be induced for differentiation into glial cells and neurons in vivo and in vitro, laying the foundation for transplanting ciRNPCs to treat neurodegenerative diseases.

     

  • 2013年,邓宏魁研究团队利用7种小分子化合物组合(Forskolin、 D4476、 2-methyl-5-hydroxytryptamine、VPA、CHIR99021、616452和tranylcypromine)实现了体细胞的重编程,获得化合物诱导多能性干细胞(chemically induced pluripotent stem cells, ciPSCs),其基因表达谱、表观遗传状态,以及分化和生殖系统传代的潜能与胚胎干细胞十分相似,成为体细胞重编程技术上的一个重大突破,开辟了利用小分子化合物进行细胞命运重新编程的新方法,为实验室合成用于移植治疗的候选细胞带来更多可能性[1]。 相比于外源基因插入,小分子化合物的优势在于无遗传修饰、安全性更高,剂量和作用时间易控,在体细胞重编程及转分化研究中备受重视。之后几年,陆续有研究团队利用小分子化合物成功将成纤维细胞转化为神经细胞[2-5]。利用可有效促进细胞重编程的小分子化合物,获得低致瘤性、稳定表达的细胞移植供体已成为当前再生医学领域的研究热点。

    丙戊酸(valproic acid, VPA)是一种组蛋白去乙酰化酶抑制剂,在促进成纤维细胞重编程的同时能够通过下调 p16、p21 通路及解除细胞周期阻滞来抑制重编程过程中的衰老,进而提升重编程效率[6],还可以提高Bcl-2和抑制GSK-3β的表达,对损伤的神经细胞产生保护作用[7]。CHIR99021是GSK-3抑制剂,可以促进早期神经化的细胞增殖,稳定下游效应因子如c-Myc,促进细胞的自我更新,还可以通过调控多种信号途径(Wnt/β、TGF-β等)维护细胞的多能性。RepSox又名E-616452或ALK5,是TGF-β受体激酶的抑制剂,可同时激活BMP与抑制TGF-β/Smad信号通路,诱发成纤维细胞重编程,并可调节骨髓间充质干细胞的体外维持和分化[8-9]。ICHIDA等[10]发现RepSox可有效地替代Sox2或c-Myc,促进小鼠成纤维细胞重编程成iPSCs,极大提高重编程效率。有研究发现含有这3种小分子化合物的组合(VPA、CHIR99021和RepSox,即VCR组合)联合低氧可成功将小鼠成纤维细胞重编程为神经前体细胞[11-12]

    当前,帕金森病、阿尔茨海默病等神经退行性疾病只能通过药物遏制病情恶化,并不能根治。神经前体细胞(neural progenitor cells, NPCs)不仅能够自我更新和分化为所有类型的神经细胞[13-14],而且能够迁移并整合到中枢神经系统的受损部位,因此,利用小分子化合物诱导体细胞重编程为多能性NPCs用于神经退行性疾病的细胞替代性治疗,具有极大的应用前景。本研究尝试利用小分子化合物VCR组合,诱导大鼠胚胎成纤维细胞(rat embryonic fibroblasts, REFs)重编程为ciRNPCs并鉴定其功能,为细胞替代性移植治疗神经损伤疾病奠定基础。

    健康雌雄Sprague-Dawley(SD)大鼠购自安徽医科大学实验动物中心。清洁级动物房中饲养,环境温度控制在25 ℃,雌雄受孕比例为1∶1,饲养密度≤4只/盒,自由活动。喂食商品化颗粒饲料,高温消毒饮水垫料,定期更换垫料。实验操作按照我国《实验动物福利伦理审查指南(GB/T 35892-2018)》要求,规范落实实验动物福利伦理。

    高糖DMEM培养基、Penicillin-Streptomycin Solution(双抗)购自Hyclone;konockout DMEM培养基、非必需氨基酸(NEAA)、丙酮酸钠、β-巯基乙醇、Knockout血清替代物、L-Glutamax、B27、0.25%胰蛋白酶-EDTA、胎牛血清购自Gibco;NeuroCult Basal培养基购自Stem cell technologies;CHIR99021、RepSox购自Selleckchem; VPA、Poly-l-ornithine hydrobromide(PLO) 购自Sigma;N2购自Gemini; 白血病抑制因子(LIF)、鼠表皮细胞生长因子(rat EGF)购自PeproTech;碱性成纤维细胞生长因子(bFGF)购自R&D;鼠抗Nestin、兔抗Sox2、兔抗Pax6、鼠抗Tuj1购自Abcam;兔抗GFAP购自Bioss;驴抗兔Cy3购自Jackson Lab;驴抗鼠Alexa Fluor 488、CellTrackerTM CM-DiI Dye、抗荧光淬灭封片剂购自Invitrogen;碱性磷酸酶检测试剂盒购自Beyotime;Prime ScriptTM RT Master Mix试剂盒购自TaKaRa。

    脊椎脱臼法处死孕16~18 d的SD大鼠,取胎鼠,去除头部、四肢、内脏组织、性腺和椎骨等,将躯干部分皮肤剥下来剪为1 mm3组织块贴于培养瓶底,每瓶加入3 mL成纤维细胞培养基,CO2细胞培养箱中倒置培养6 h后,将培养瓶翻正继续培养,细胞生长至80%~90%时进行传代培养。

    将培养至P3代的REFs作为起始诱导细胞,在十二孔板上以1×105/孔进行接种,并在CO2培养箱中培养2 d,然后更换添加VCR的KSR培养基,观察在低氧条件(5%O2)下不同LIF浓度组和高浓度LIF条件下不同氧浓度组中中间态细胞产生情况,每组设置12个复孔。LIF高浓度组为(knockout DMEM+15% KOSR+1% NEAA+1% GlutaMAX+1%丙酮酸钠+0.1 mmol/L β-硫基乙醇+10000 U/mL LIF+0.5 mmol/L VPA+3 μmol/L CHIR99021+1μmol/L RepSox+1%双抗),LIF低浓度组为(knockout DMEM+15% KOSR+1% NEAA+1% GlutaMAX+1%丙酮酸钠 +0.1 mmol/L β-硫基乙醇+1000 U/mL LIF+0.5 mmol/L VPA+3 μmol/L CHIR99021+1 μmol/L RepSox+1%双抗),常氧组为5%CO2、21%O2,低氧组为5%CO2、5%O2。均在37 ℃的三气培养箱中继续培养15 d,每5 d更换一次培养基,使之成为中间态细胞。体积分数为4%多聚甲醛室温固定中间态细胞8 min后,使用碱性磷酸酶染色,0.5%的中性红染色液复染细胞核与细胞质,倒置显微镜下观察细胞形态,是否有红色聚集的克隆形成。

    将中间态细胞用0.25%胰蛋白酶-EDTA消化后,重新接种于低黏附板中,更换为NEM培养基(NeuroCult Basal培养基+30 ng/mL 肝素+20 ng/mL EGF+20 ng/mL bFGF),常氧条件下继续悬浮培养2 d,倒置显微镜可观察到悬浮的神经球,即获得第一代ciRNPCs。ciRNPCs直径达到100~150 μm即可进行传代,将神经球收集于15 mL的离心管中,90×g离心5 min,用0.25%胰蛋白酶-EDTA消化后,加入0.2 mL培养基重悬,移液枪吹打形成单细胞后,以2×105/孔为标准接种于6孔板中,每隔2~3 d半量换液,约5~8 d传代一次。

    选择生长状态良好的ciRNPCs神经球,接种于PLO和Laminin包被的无菌玻片,细胞放入CO2培养箱继续培养4 h左右,待大部分细胞贴壁后,进行免疫荧光染色。用体积分数为4%多聚甲醛固定玻片上的细胞18 min,分别加入封闭液①(2% BAS+1×PBS+10%驴血清(NDS)+10%羊血清(NGS)+1%TritonX-100)室温渗透8 min,封闭液②(2% BAS+1×PBS+10% NDS+10% NGS)室温封闭50 min。使用下列一抗与样品在4 ℃孵育过夜,即鼠抗Nestin (1∶00),兔抗Sox2 (1∶300),兔抗Pax6(1∶50),兔抗GFAP(1∶100),鼠抗Tuj1(1∶300)。次日,避光与荧光二抗Alexa Fluor 488(1∶500)或Cy3(1∶1 000)室温孵育1 h后,用4′,6-二脒基-2-苯基吲哚(DAPI)复染细胞核15 min,抗荧光淬灭剂封片,共聚焦显微镜观察(Olympus,FV-1200MPE SHARE,日本)观察实验结果,每组实验均独立重复3次,每次重复统计800~1200个免疫荧光标记细胞,计数细胞分化效率。

    选择生长状态良好的第三代ciRNPCs,以2×104/孔接种于PLO和Laminin包被的无菌玻片,待细胞贴壁后进行体外分化。①常规神经诱导分化:更换为N2B27培养基(neural basal medium+1% N2+2% B27),继续培养14 d。②神经元分化:更换为神经元分化培养基(neural basal medium+2% B27+1% N2+10 ng/mL BDNF+10 ng/mL GDNF+10 ng/mL IGF+1 μmol/L cAMP+200 µmol/L ascorbic acid),继续培养28 d。③胶质细胞分化:更换为神经胶质细胞诱导培养基 (neural basal medium+1% N2+2% B27),继续培养21 d。密切观察细胞形态学变化及分化情况,用免疫荧光分别检测神经元表面特异性抗原Tuj1与神经胶质细胞特异性抗原GFAP的表达。

    将6~8周龄雄性SD大鼠深度麻醉后,用脑立体定位仪固定大鼠头部,以前囟为坐标原点,分别向右侧大脑两个位点(①AP-4.4 mm,ML-1.2 mm,DV-7.8 mm;②AP-4.0 mm,ML-0.8 mm,DV-8.0 mm)注入用CM-DiI标记带红色荧光的ciRNPCs(P3,1×105/8 μL)。移植细胞8周后,将大鼠心脏灌注取脑,并进行冰冻切片,免疫荧光检测GFAP与Tuj1特异性抗原表达,激光共聚焦显微镜观察ciRNPCs在宿主脑内存活、迁移及分化状况。

    颈椎脱臼法处死孕16~18 d的SD大鼠,取胎鼠头部,去其脑膜等,取中脑组织,剪碎后加胰酶消化20 min,接种于低黏附板中,1~2 d即可观察到聚集成团的神经干细胞(neural stem cells, NSCs)。取REFs、ciRNPCs和NSCs三组细胞分别加入已加过蛋白酶抑制剂的蛋白裂解液,超声破碎后冰上裂解30 min,4 ℃,12000 r/min离心20 min,收集裂解液上清,然后进行蛋白定量。各组样品均取20 μg总蛋白进行SDS-PAGE,电转移至PVDF膜上,应用Nestin、Sox2和Pax6抗体孵育并与相应的二抗反应,化学发光法检测抗原抗体结合区条带,对不同相对分子质量的蛋白表达情况进行分析。

    用RNA提取试剂盒提取REFs、ciRNPCs、NSCs总RNA,检测RNA样品的浓度,将RNA逆转录成cDNA,加入设计好的引物进行扩增,将得到的产物进行琼脂塘凝胶电泳,电泳结束后上机分析表达情况。具体引物序列(5′-3′)为GAPDH(F: GTATGTCGTGGAGTCTACAG;R: GAGTTGTCATATTTCTCGTGGT)、Nestin(F: TGCAGCCACTGAGGTATCTG;R: CAGTTCCCACTCCTGTGGTT)、Sox2(F: GCAGTACAACTCCATGAC;R: CGAGTAGGACATGCTGTA)、Oct4(F: CGTTCTCTTTGGAAAGGTGTTC ;R: ACACTCGGACCACGTCTTTC)。

    采用Graphpad 8.0.1软件进行统计学分析,所得的实验数据用$ \bar x \pm s $表示,采用单因素方差分析检验,P<0.05为差异有统计学意义。

    在低氧(5%O2)条件下,LIF高浓度组与LIF低浓度组诱导产生的中间态细胞差异有统计学意义,诱导5 d高浓度组可见明显的细胞聚集趋势,而低浓度组未见明显细胞集落且死细胞较多。第10~15 天时,高浓度组形成致密的细胞集落,细胞克隆数(30余个)高于低浓度组(P<0.01),克隆直径(100~200 μm)亦大于低浓度组(图1A),表明增加LIF浓度可显著提高REFs重编程为神经前体细胞的效率。

    图  1  神经前体细胞诱导培养条件的优化
    Figure  1.  Optimization of the induction culture conditions of neural progenitor cells
    A: REFs induced cell colonies under the two concentrations of LIF (Left: 1 000 U/mL; Right: 10 000 U/mL); B: REFs induced to form compact cell colonies under normoxic (21% O2) and hypoxic (5% O2) conditions.

    高LIF浓度低氧组(5%O2)诱导5 d后,出现致密聚集的克隆,第10~15 d可见隆起的细胞集落,且与周围细胞界限明显,但常氧组(21%O2)形成的细胞集落较少,且较为分散。低氧组诱导15 d后发现在1×105个REFs中大约产生30个致密细胞克隆(图1B)。说明低氧条件有利于促进REFs重编程为ciRNPCs。

    本实验中,REFs重编程为ciRNPCs经历两个阶段(图2A图2B),第一阶段是化学诱导中间态细胞产生,REFs接种2 d后,在低氧条件(5%O2)下采用含有VCR组合和10 000 U/mL LIF的KSR培养基继续培养15 d,观察到明显的致密细胞集落,即中间态细胞(图2C)。碱性磷酸酶(alkaline phosphatase, AP)染色表明,90%以上的克隆高表达AP(图2D)。第二阶段是特异性诱导ciRNPCs,中间态细胞在含有肝素、EGF和bFGF的神经基础培养基(NEM)中培养5~10 d后,可见明显的类似NPCs双极性细胞(图2E,白色箭头)。0.25%胰蛋白酶-EDTA消化中间态细胞,接种于低黏附板, NEM培养基常氧条件下悬浮培养2 d后可见大量神经胚球形成,将漂浮的神经球收集后,即为第一代ciRNPCs(图2F)。

    图  2  低氧条件下小分子化合物VCR诱导REFs产生ciRNPCs
    Figure  2.  Induction of ciRNPCs from REFs by VCR, a chemical cocktail, under physiological hypoxic condition
    A: Schematic diagram of the experimental strategy for inducing REFs to from ciRNPCs; B: Changes in cell morphology at different stages of the induction process, presented in order from left to right were REFs, cells induced for 5 days, cells induced for 15 days, and ciRNPCs; C: Clones obtained 15 days after induction under hypoxic conditions; D: Induction of AP-positive compact cell colonies by VCR under hypoxic conditions; E: Induction of NPC-like cells from VCR-treated REFs; F: CiRNPCs were formed.

    将获得的第一代ciRNPCs神经球接种于含有PLO和Laminin包被的无菌玻片,免疫荧光染色结果显示,ciRNPCs胚球具有典型的神经球样结构,能够表达NPCs标记物Nestin、Sox2与Pax6,具有NPCs特征(图3A图3B)。低黏附培养板中悬浮培养的ciRNPCs神经胚球,可连续传至P13代,在神经干细胞培养基中仍具有良好的成球增殖能力,未发生形态改变。不同代次(P1、P3、P5、P13)贴壁单层培养的ciRNPCs细胞形态与生长状态无明显变化,与大鼠NPCs极为相似(图3C),而且ciRNPCs P10代与P3代胚球大小与数量也无明显差异(图3D),表明REFs-ciRNPCs具有NPCs的特征,并可以增殖和自我更新。Western blot与RT-PCR检测表明,与REFs相比,ciRNPCs中多潜能性转录因子Oct4、Sox2、Nestin与Pax6的表达量提高(P<0.01),与大鼠NSCs具有明显的相似性(图4)。

    图  3  REFs-ciRNPCs的特征鉴定与自我更新
    Figure  3.  Proliferation and self-renewal of ciRNPCs
    A: The induced ciRNPCs expressed the NPCs markers, Nestin (red) and Sox2 (green); B: The induced ciRNPCs expressed the NPCs markers, Nestin (red) and Pax6 (green); the nuclei were counterstained with DAPI; C: Representative images of ciRNPCs at passages 1, 3, 5 and 13 were shown as indicated; D: Neurospheres of ciRNPCs at P3 versus those at P10 cultured in suspension (n=30).
    图  4  REFs-ciRNPCs的特征鉴定(n=3)
    Figure  4.  Identification of the features of REFs-ciRNPCs (n=3)
    A: Western blot analysis of REFs, ciRNPCs and NSCs proteins; B: The activation of pluripotency-related genes were validated by PCR. M: Marker. *P<0.05; **P<0.01.

    P3代REFs-ciRNPCs在神经元分化培养基中培养14 d后,42%细胞神经元特异性抗原Tuj1表达阳性(图5A)。在含N2、B27的neural basal medium培养基中诱导培养14 d后,大部分细胞表达神经胶质细胞特异性抗原GFAP(图5B),且GFAP阳性细胞胞体呈多角形,突起较多,突起未见形成明显的网状结构,表明REFs-ciRNPCs具有NPCs分化为神经细胞谱系的能力。

    图  5  REFs-ciRNPCs的体外分化能力检测
    Figure  5.  Multipotency of REFs-ciRNPCs in vitro
    A: REFs-ciRNPCs expressed neuron marker Tuj1 after being cultured in neural differentiation medium; B: ciRNPCs could differentiated into astrocytes and express astrocytes marker GFAP.

    大鼠脑组织冰冻切片免疫荧光检测结果显示,移植后8周,CM-DiI标记的ciRNPCs细胞在大鼠脑内两个注射靶点能够存活并形成明显的移植物区域,部分细胞可发生远距离迁移(约2 mm),且较多CM-DiI标记的细胞免疫荧光检测Tuj1、GFAP呈阳性,而且Tuj1+与GFAP+细胞团散布于移植物各处,并整合于宿主纹状体(图6),表明移植的REFs-ciRNPCs可以在宿主脑微环境中存活并分化为神经元与神经胶质细胞,整合至宿主脑组织中。

    图  6  REFs-ciRNPCs在大鼠脑内的存活、分化
    Figure  6.  Survival and differentiation of REFs-ciRNPCs in rat brain
    A: Transplanted cells could differentiate into neurons, ciRNPCs (red) and GFAP (green), in the brain; B: Transplanted cells could differentiate into glial cells, ciRNPCs (red) and Tuj1 (green), in the brain.

    2014年,裴钢院士团队发现在低氧条件下,利用VPA、CHIR99021和RepSox三种小分子化合物组合可以将小鼠成纤维细胞重编程为NPCs[15]。在此基础上,本研究对VCR组合诱导时间与生长因子LIF浓度进行了优化,明显提高了REFs重编程为ciRNPCs的诱导效率。本研究表明,在生理缺氧(5%O2)条件下,VCR组合可以使已分化的REFs转分化为中间态细胞,这一过程伴随RepSox激活内源性Sox2表达,转录因子Sox2 与其他转录因子协同作用,实现体细胞向神经细胞/多能神经祖细胞的转化。

    LIF又称胆碱能神经元分化因子,由202个氨基酸残基组成,是IL-6家族的多效性细胞因子,在肝脏、骨骼、子宫、肾脏和中枢神经系统等不同器官中发现功能性LIF受体,且在不同的组织系统中具有不同的生物学作用[16-19]。研究发现LIF可抑制小鼠胚胎干细胞的体外分化,维持其全能性状态和自我更新能力,因此本研究通过提高LIF浓度,可以明显提高细胞重编程效率。

    本研究通过两个阶段将REFs重编程ciRNPCs,第一阶段为通过化学诱导,将REFs重编程为中间态细胞,为避免诱导过程中因多能性被激活而出现致瘤性的风险,本研究中将低氧诱导时间增加至15 d,添加的生长因子LIF浓度增加为10000 U/mL,观察到中间态细胞的致密细胞集落数量明显增多,而且90%以上的克隆碱性磷酸酶染色呈阳性。第二阶段特异性诱导ciRNPCs的产生,将中间态细胞经0.25%胰蛋白酶-EDTA消化并接种于低黏附板,常氧悬浮培养2 d后可获得第一代ciRNPCs。

    主转录因子被认为是特定细胞特性的主要决定因素[20-23],但小分子化合物可以激活这些基因的表达并发挥作用,因此小分子化合物在体细胞重编程及转分化研究中越来越受到重视[2-3, 24]。仅通过小分子化合物组合与生长因子共同作用,即可通过操纵细胞信号传导途径和内源性细胞命运决定程序,实现直接从体细胞向神NPCs转化,无需外源转基因或其他细胞命运特异性因子。本研究中发现,与REFs相比,ciRNPCs中重编程和NPCs多能性转录因子Oct4、Sox2、Nestin与Pax6的表达量显著提高,与NSCs具有明显的相似性,VCR小分子化合物组合可能通过调控多能性转录因子表达,实现ciRNPCs的重编程诱导。

    本研究获得的REFs-ciRNPCs胚球具有典型的神经球样结构,能够表达NPCs标记物Nestin、Sox2与Pax6,具有典型的NPCs特征,可连续传达至13代,仍具有良好的成球增殖能力。在体外特定诱导条件下,REFs-ciRNPCs可分化为Tuj1+与GFAP+细胞,与大鼠脑源性NPCs在形态学、自我更新、增殖和多能性等方面具有相似的生物学特征。将ciRNPCs移植到大鼠黑质纹状体区8周后,免疫荧光检测显示,移植细胞在注射靶点能够长期存活并形成明显的移植物区域,移植细胞可分化为Tuj1+与GFAP+细胞,少量细胞可发生远距离迁移,可见移植的REFs-ciRNPCs可以在宿主脑微环境中分化为各类功能神经元与胶质细胞,并整合到宿主脑组织中发挥作用。

    综上所述,本研究通过分步诱导法,利用小分子化合物VCR组合低氧条件下可直接诱导REFs转分化为ciRNPCs,并具备体内与体外诱导分化为神经胶质细胞和功能性神经元的潜能,为NPCs移植治疗神经损伤疾病提供重要的细胞来源。

    *    *    *

    利益冲突 所有作者均声明不存在利益冲突

  • 图  1   神经前体细胞诱导培养条件的优化

    Figure  1.   Optimization of the induction culture conditions of neural progenitor cells

    A: REFs induced cell colonies under the two concentrations of LIF (Left: 1 000 U/mL; Right: 10 000 U/mL); B: REFs induced to form compact cell colonies under normoxic (21% O2) and hypoxic (5% O2) conditions.

    图  2   低氧条件下小分子化合物VCR诱导REFs产生ciRNPCs

    Figure  2.   Induction of ciRNPCs from REFs by VCR, a chemical cocktail, under physiological hypoxic condition

    A: Schematic diagram of the experimental strategy for inducing REFs to from ciRNPCs; B: Changes in cell morphology at different stages of the induction process, presented in order from left to right were REFs, cells induced for 5 days, cells induced for 15 days, and ciRNPCs; C: Clones obtained 15 days after induction under hypoxic conditions; D: Induction of AP-positive compact cell colonies by VCR under hypoxic conditions; E: Induction of NPC-like cells from VCR-treated REFs; F: CiRNPCs were formed.

    图  3   REFs-ciRNPCs的特征鉴定与自我更新

    Figure  3.   Proliferation and self-renewal of ciRNPCs

    A: The induced ciRNPCs expressed the NPCs markers, Nestin (red) and Sox2 (green); B: The induced ciRNPCs expressed the NPCs markers, Nestin (red) and Pax6 (green); the nuclei were counterstained with DAPI; C: Representative images of ciRNPCs at passages 1, 3, 5 and 13 were shown as indicated; D: Neurospheres of ciRNPCs at P3 versus those at P10 cultured in suspension (n=30).

    图  4   REFs-ciRNPCs的特征鉴定(n=3)

    Figure  4.   Identification of the features of REFs-ciRNPCs (n=3)

    A: Western blot analysis of REFs, ciRNPCs and NSCs proteins; B: The activation of pluripotency-related genes were validated by PCR. M: Marker. *P<0.05; **P<0.01.

    图  5   REFs-ciRNPCs的体外分化能力检测

    Figure  5.   Multipotency of REFs-ciRNPCs in vitro

    A: REFs-ciRNPCs expressed neuron marker Tuj1 after being cultured in neural differentiation medium; B: ciRNPCs could differentiated into astrocytes and express astrocytes marker GFAP.

    图  6   REFs-ciRNPCs在大鼠脑内的存活、分化

    Figure  6.   Survival and differentiation of REFs-ciRNPCs in rat brain

    A: Transplanted cells could differentiate into neurons, ciRNPCs (red) and GFAP (green), in the brain; B: Transplanted cells could differentiate into glial cells, ciRNPCs (red) and Tuj1 (green), in the brain.

  • [1]

    HOU P, LI Y, ZHANG X, et al. Pluripotent stem cells induced from mouse somatic cells by small-molecule compounds. Science,2013,341(6146): 651–654. DOI: 10.1126/science.1239278

    [2]

    LI X, ZUO X, JING J, et al. Small-molecule-driven direct reprogramming of mouse fibroblasts into functional neurons. Cell Stem Cell,2015,17(2): 195–203. DOI: 10.1016/j.stem.2015.06.003

    [3]

    LUJAN E, CHANDA S, AHLENIUS H, et al. Direct conversion of mouse fibroblasts to self-renewing, tripotent neural precursor cells. Proc Natl Acad Sci U S A,2012,109(7): 2527–2532. DOI: 10.1073/pnas.1121003109

    [4]

    TANG Y, XIONG S, YU P, et al. Direct Conversion of mouse fibroblasts into neural stem cells by chemical cocktail requires stepwise activation of growth factors and Nup210. Cell Rep,2018,24(5): 1355–62.e3. DOI: 10.1016/j.celrep.2018.06.116

    [5]

    YANG J, CAO H, GUO S, et al. Small molecular compounds efficiently convert human fibroblasts directly into neurons. Mol Med Rep,2020,22(6): 4763–4771. DOI: 10.3892/mmr.2020.11559

    [6]

    ZHAI Y, CHEN X, YU D, et al. Histone deacetylase inhibitor valproic acid promotes the induction of pluripotency in mouse fibroblasts by suppressing reprogramming-induced senescence stress. Exp Cell Res,2015,337(1): 61–67. DOI: 10.1016/j.yexcr.2015.06.003

    [7]

    LI Z, WU F, ZHANG X, et al. Valproate attenuates endoplasmic reticulum stress-induced apoptosis in SH-SY5Y cells via the AKT/GSK3β signaling pathway. Int J Mol Sci,2017,18(2): 315. DOI: 10.3390/ijms18020315

    [8]

    GUO Y, ZHU H, LI X, et al. RepSox effectively promotes the induced differentiation of sheep fibroblasts into adipocytes via the inhibition of the TGF-β1/Smad pathway. Int J Mol Med,2021,48(2): 148. DOI: 10.3892/ijmm.2021.4981

    [9]

    ZHAO X X, AN X L, ZHU X C, et al. Inhibiting transforming growth factor-β signaling regulates in vitro maintenance and differentiation of bovine bone marrow mesenchymal stem cells. J Exp Zool B Mol Dev Evol,2018,330(8): 406–416. DOI: 10.1002/jez.b.22836

    [10]

    ICHIDA J K, BLANCHARD J, LAM K, et al. A small-molecule inhibitor of TGF-Beta signaling replaces sox2 in reprogramming by inducing nanog. Cell Stem Cell,2009,5(5): 491–503. DOI: 10.1016/j.stem.2009.09.012

    [11]

    YOSHIDA Y, TAKAHASHI K, OKITA K, et al. Hypoxia enhances the generation of induced pluripotent stem cells. Cell Stem Cell,2009,5(3): 237–241. DOI: 10.1016/j.stem.2009.08.001

    [12]

    CHENG L, HU W, QIU B, et al. Generation of neural progenitor cells by chemical cocktails and hypoxia. Cell Res,2014,24(6): 665–679. DOI: 10.1038/cr.2014.32

    [13]

    MARTINO G, PLUCHINO S. The therapeutic potential of neural stem cells. Nat Rev Neurosci,2006,7(5): 395–406. DOI: 10.1038/nrn1908

    [14]

    ZHU J, ZHOU L, XINGWU F. Tracking neural stem cells in patients with brain trauma. N Engl J Med,2006,355(22): 2376–2378. DOI: 10.1056/NEJMc055304

    [15]

    CHENG L, HU W, QIU B, et al. Generation of neural progenitor cells by chemical cocktails and hypoxia. Cell Res,2015,25(5): 645–646. DOI: 10.1038/cr.2015.55

    [16]

    NICOLA N A, BABON J J. Leukemia inhibitory factor (LIF). Cytokine Growth Factor Rev,2015,26(5): 533–544. DOI: 10.1016/j.cytogfr.2015.07.001

    [17]

    SANTOS G, SILVA D, FORTUNA V, et al. Leukemia inhibitory factor (LIF) overexpression increases the angiogenic potential of bone marrow mesenchymal stem/stromal cells. Front Cell Dev Biol, 2020, 8: 778[2020-11-11]. https://doi.org/10.3389/fcell.2020.00778.

    [18]

    LIN J, NIIMI Y, CLAUSI M, et al. Neuroregenerative and protective functions of Leukemia Inhibitory Factor in perinatal hypoxic-ischemic brain injury. Exp Neurol, 2020, 330: 113324[2020-12-11]. https://doi.org/10.1016/j.expneurol.2020.113324.

    [19]

    BAUER S. Cytokine control of adult neural stem cells. Ann N Y Acad Sci,2009,1153: 48–56. DOI: 10.1111/j.1749-6632.2009.03986.x

    [20]

    XU J, DU Y, DENG H. Direct lineage reprogramming: Strategies, mechanisms, and applications. Cell Stem Cell,2015,16(2): 119–134. DOI: 10.1016/j.stem.2015.01.013

    [21]

    KIM S M, FLASSKAM H, HERMANN A, et al. Direct conversion of mouse fibroblasts into induced neural stem cells. Nat Protoc,2014,9(4): 871–881. DOI: 10.1038/nprot.2014.056

    [22]

    CAIAZZO M, DELL'ANNO M T, DVORETSKOVA E, et al. Direct generation of functional dopaminergic neurons from mouse and human fibroblasts. Nature,2011,476(7359): 224–227. DOI: 10.1038/nature10284

    [23]

    PFISTERER U, KIRKEBY A, TORPER O, et al. Direct conversion of human fibroblasts to dopaminergic neurons. Proc Natl Acad Sci U S A,2011,108(25): 10343–10348. DOI: 10.1073/pnas.1105135108

    [24]

    CHENG L, GAO L, GUAN W, et al. Direct conversion of astrocytes into neuronal cells by drug cocktail. Cell Res,2015,25(11): 1269–1272. DOI: 10.1038/cr.2015.120

  • 期刊类型引用(2)

    1. 高群伟,代振佳,杨新康,刘长青,刘高峰. 小分子组合诱导大鼠胚胎成纤维细胞重编程为功能性神经元. 浙江大学学报(医学版). 2024(04): 498-508 . 百度学术
    2. 汤文魁,王国栋,魏梦珍,张丹丹,吕丹薇,刘权辉,黄奔. 通过Forskolin将小鼠成纤维细胞重编程为神经元试验. 黑龙江动物繁殖. 2023(03): 1-6 . 百度学术

    其他类型引用(0)

图(6)
计量
  • 文章访问数:  709
  • HTML全文浏览量:  168
  • PDF下载量:  153
  • 被引次数: 2
出版历程
  • 收稿日期:  2021-09-13
  • 修回日期:  2022-05-29
  • 网络出版日期:  2022-09-25
  • 发布日期:  2022-09-19

目录

/

返回文章
返回