欢迎来到《四川大学学报(医学版)》 2025年6月10日 星期二

细菌c-di-AMP在宿主免疫中的作用研究

吴沁蕊, 彭显, 周学东

吴沁蕊, 彭显, 周学东. 细菌c-di-AMP在宿主免疫中的作用研究[J]. 四川大学学报(医学版), 2022, 53(6): 1098-1103. DOI: 10.12182/20220860102
引用本文: 吴沁蕊, 彭显, 周学东. 细菌c-di-AMP在宿主免疫中的作用研究[J]. 四川大学学报(医学版), 2022, 53(6): 1098-1103. DOI: 10.12182/20220860102
WU Qin-rui, PENG Xian, ZHOU Xue-dong. Advances in Research on the Role of Bacterial c-di-AMP in Host Immunity[J]. Journal of Sichuan University (Medical Sciences), 2022, 53(6): 1098-1103. DOI: 10.12182/20220860102
Citation: WU Qin-rui, PENG Xian, ZHOU Xue-dong. Advances in Research on the Role of Bacterial c-di-AMP in Host Immunity[J]. Journal of Sichuan University (Medical Sciences), 2022, 53(6): 1098-1103. DOI: 10.12182/20220860102

细菌c-di-AMP在宿主免疫中的作用研究

基金项目: 国家自然科学基金(No. 32070120、 No. 81991500和No. 81991501)资助
详细信息
    通讯作者:

    周学东: E-mail:zhouxd@scu.edu.cn

Advances in Research on the Role of Bacterial c-di-AMP in Host Immunity

More Information
  • 摘要: 环状二聚腺苷-3′,5′-单磷酸(cyclic diadenosine monophosphate, c-di-AMP)是细菌和古细菌中新发现的第二信使。通过直接与靶蛋白结合或影响靶蛋白表达,c-di-AMP调节多种细菌的生理功能,包括维持渗透压、平衡中枢代谢、监测DNA损伤以及控制生物膜和孢子形成。作为一种新型病原体相关分子模式与宿主模式识别受体结合,通过激活干扰素基因刺激蛋白(stimulator of interferon genes, STING),诱导环磷酸鸟苷-磷酸腺苷合酶(cyclic GMP-AMP synthase, cGAS)-STING信号轴产生Ⅰ型干扰素,并通过核因子-κB信号通路促进炎症因子分泌,在宿主对细菌感染及肿瘤的免疫中发挥重要作用。因其良好的免疫原性,c-di-AMP可作为免疫佐剂为疫苗的研发提供新的靶点。然而,对c-di-AMP在宿主免疫中的具体作用机制有待进一步探索。本文介绍了c-di-AMP的结构及生物学特性,总结了c-di-AMP对宿主免疫应答调控的可能机制,同时跟进其作为免疫佐剂应用于临床的治疗新进展。研究c-di-AMP的功能及对宿主免疫应答的作用机制可为临床上解决细菌耐药、感染控制、肿瘤防治以及疫苗开发提供新的思路。

     

    Abstract: Cyclic dimeric adenosine 3′,5′-monophosphate (c-di-AMP) is a newly-discovered second messenger in bacteria and archaea. By directly binding to or affecting the expression of target proteins, c-di-AMP regulates the physiological functions of bacteria, including maintaining osmotic pressure, balancing central metabolism, monitoring DNA damage, and controlling biofilm and spore formation. As a new pathogen-associated molecular pattern (PAMP), it binds to the host pattern recognition receptor (PRR), induces cyclic GMP-AMP synthase (cGAS)-STING signal axis to produce type Ⅰ interferon by activating the stimulator of interferon genes (STING), and promotes the secretion of inflammatory factors through nuclear factor κB (NF-κB) signaling pathway, thereby playing an important role in host immunity to bacterial infection and tumorigenesis. Due to its immunogenicity, c-di-AMP could be used as an immune adjuvant to provide new targets for the development of vaccines. However, the specific mechanism of action of c-di-AMP in host immunity awaits further exploration. Herein, we presented the structure and biological characteristics of c-di-AMP, and summarized the possible mechanism of c-di-AMP’s regulation of host immune response. In addition, we also reported the latest findings on using c-di-AMP as an immune adjuvant in clinical treatment. Research on the function of c-di-AMP and its mechanism of action on host immune response provides new ideas for finding clinical solutions to bacterial resistance, infection control, tumor prevention, and vaccine development in the future.

     

  • 环状二聚腺苷-3′,5′-单磷酸(cyclic diadenosine monophosphate, c-di-AMP)是一种由细菌产生的第二信使,由WITTE等[1]于枯草芽孢杆菌的DisA结构域上首次发现。目前已在李斯特菌[2]、金黄色葡萄球菌[3]、肺炎链球菌[4]、变异链球菌[5]、沙眼衣原体[6]等多种细菌中检测到完善的c-di-AMP合成与分解系统。两分子ATP在二腺苷酸环化酶的作用下合成c-di-AMP,并在特异性的磷酸二酯酶的作用下降解为5′-磷酸腺苷-3′-5′-腺苷(5′-phosphoadenylyl-3′-5′-adenosine, pApA)或两分子AMP;作为第二信使响应细胞内外的信号,并通过与某些受体、核糖体开关或蛋白质分子结合参与维持渗透压、对DNA损伤的反应,以及控制中枢代谢、生物膜形成、抗酸胁迫、孢子形成、毒力等功能,在细菌稳态中发挥重要作用[7-8]

    与其他环状核苷酸第二信使一样,作为干扰素基因刺激因子(stimulator of interferon genes, STING)的激动剂,c-di-AMP可被真核细胞受体识别,并在宿主细胞中引发免疫反应,产生相应的免疫效应[9]。本文综述了c-di-AMP在感染、肿瘤免疫中发挥的作用及其作为免疫佐剂的研究新进展,旨在为临床提供一种新的治疗免疫相关疾病的策略。

    人类免疫系统包括适应性免疫和固有免疫,在宿主有效防御外来基因入侵方面发挥着关键作用。免疫系统通过识别和消除入侵的病原体来维持机体的稳态,从而保护机体免受疾病侵害。人体免疫应答依赖于模式识别受体(pattern recognition receptors, PRR)识别并结合病原相关分子模式(pathogen-associated molecular pattern, PAMP)[10]。宿主固有免疫系统为抵御包括病原菌在内的入侵微生物提供了关键的第一道防线。研究证实,相较于传统PAMP,如细菌内毒素,机体能针对活细菌合成的vita-PAMPs如mRNA等产生更强烈的免疫应答[11-12]

    c-di-AMP作为一种vita-PAMPs可与至少四种受体结合,分别是STING、DDX41、RECON、ERAdP[13-14]。c-di-AMP与不同的受体结合时,展现出了不同的三级结构,包括U型、V型、E型和O型[9],c-di-AMP分子的构象允许其与不同的蛋白质和RNA靶点有不同的相互作用模式。其中研究最多,应用最广的是c-di-AMP作为STING的激动剂在机体免疫应答中发挥的作用。

    STING是位于内质网中的一种重要的膜蛋白[15]。当外来病原微生物入侵宿主细胞,胞质中的环磷酸鸟苷-磷酸腺苷合酶(cyclic GMP-AMP synthase, cGAS)识别病原微生物的双链DNA,产生第二信使 2′3′-cGAMP,与STING结合形成复合物,复合物从内质网转移到高尔基体,激活TANK结合激酶1(TANK-binding kinase 1, TBK1)和干扰素调节因子3(interferon regulatory factor 3, IRF3),产生Ⅰ型干扰素(type Ⅰ interferon, IFN-Ⅰ)和炎性细胞因子[16]。研究发现,c-di-AMP等环二核苷酸穿过细胞的脂质双层后,可直接与两个STING单体形成的对称性二聚体凹槽相结合,激活IRF3-TBK1信号通路。在此过程中,cGAS仅作为支架蛋白发挥作用,从而通过与2′3′-cGAMP无关的方式激活STING[17],产生IFN-Ⅰ及其它炎症因子,发挥增强树突状细胞(dendritic cell, DC)和单核细胞的作用、辅助激活适应性免疫等免疫效应[18]

    细菌感染可破坏机体稳态,引发一系列全身性疾病。而宿主体内的免疫系统可通过细胞内在或外在机制介导细菌杀伤。在细菌感染的部位,细菌分泌的c-di-AMP可激活STING,产生诱导型一氧化氮合酶(inductible nitric oxide synthase, iNOS)和肿瘤坏死因子α(tumor necrosis factor-α, TNF-α)等效应分子[19]。LOUIE等[20]的研究中探讨了固有免疫在单核细胞增生李斯特菌(Listeria monocytogenes, L. m)引发的小肠结肠炎中的作用,他们发现,相较于野生型L. m,过表达c-di-AMP的L. m可更大程度激活小鼠体内的STING,使单核细胞获得产生iNOS和TNF-α的能力,减少体内L. m的负荷及其向肠道的募集,最终减轻小鼠的小肠结肠炎。同样,缺乏c-di-AMP磷酸二酯酶的L. m突变体内表现出升高的c-di-AMP水平,可诱导宿主产生IFN-Ⅰ,显著减低其感染能力,从而产生正向的免疫效应[21-22]。该结果同样证明c-di-AMP在L. m感染中发挥了重要作用。

    炭疽芽孢杆菌(Bacillus anthracis, B. a)是一种致病力极强的细菌,其引发的炭疽病对社会公共卫生和经济发展带来的危害,迄今仍占有相当大的比重[23]。HU等[24]构建了磷酸二酯酶缺乏的B. a突变体,发现磷酸二酯酶缺乏可增加B. a内c-di-AMP的浓度,c-di-AMP在细菌内积累,可抑制细菌的生长减缓细菌的增殖以及毒力。随后他们进行了动物实验,发现相较于接种野生型B. a的小鼠,使用突变菌株皮下接种,小鼠死亡率明显下降,说明c-di-AMP也可通过影响细菌毒力间接调控宿主免疫应答。

    随着c-di-AMP研究的深入,在革兰阴性细菌中,也发现了完善的c-di-AMP合成酶与分解酶系统。专性胞内寄生病原菌沙眼衣原体可导致沙眼、盆腔炎和不孕症[25],是第一个被发现可以合成c-di-AMP的革兰阴性细菌,可在多种细胞中诱导IFN-Ⅰ反应[6]

    以上研究都证实了c-di-AMP在受到感染后诱导宿主免疫应答方面具有重要作用,了解病原体入侵宿主机体的机制,针对相应信号通路也许能为感染的防治带来新的突破口。

    免疫系统在病毒入侵和细菌感染过程中发挥着关键功能。除此之外,其在癌症中的意义近年来也受到了较多关注。肿瘤是机体正常细胞恶变的产物,其特点是不断增殖并随着血液系统和淋巴系统在体内转移。正常情况下,宿主免疫系统可清除这些恶变细胞,但由于肿瘤细胞的免疫逃逸,机体难以阻止肿瘤的发生和发展[26]。肿瘤细胞可以通过激活与免疫稳态相关的负调控途径来逃避免疫系统的清除[27]

    利用人体免疫系统来对抗肿瘤已被广泛认为是一种新型治疗方法[28]。研究发现将STING激动剂与放射疗法、化学疗法和靶向疗法等传统抗肿瘤疗法联用,具有更佳的治疗效果[29]。越来越多的证据表明,cGAS-STING信号通路参与抗肿瘤免疫,而有缺陷的cGAS-STING信号通路与各种肿瘤的发生和发展密切相关[30-32]。作为STING激动剂的环二腺苷酸如c-di-AMP,在肿瘤免疫中也扮演重要角色[33]

    最新的研究证实肿瘤微环境内微生物的动态平衡可提升肿瘤的治疗效率,这种作用得益于微生物分泌的c-di-AMP[27]。LAM等[34]证实微生物衍生的STING激动剂c-di-AMP,可刺激肿瘤内的IFN-Ⅰ-NK细胞轴,重编码单核巨噬细胞,调节单核细胞极化以及NK细胞和DC的相互反应,使肿瘤微环境内的单核细胞转变为抗肿瘤生成的DC,抑制肿瘤的生长。同时,他们使用能产生c-di-AMP的嗜黏蛋白阿克曼菌(Akkermansiamuciniphila, Akk)治疗小鼠尿路上皮癌,证实Akk同样能够激活肿瘤微环境中IFN-Ⅰ-NK细胞-DC轴以促进抗肿瘤反应[35]。LEVENTHAL等[31]改造了一种大肠杆菌工程菌EcN,命名为SYNB1891,使其能大量负载STING激动剂c-di-AMP。将SYNB1891注射至荷瘤小鼠体内,发现SYNB1891治疗后18 h内小鼠促炎细胞因子如白细胞介素(interleukin, IL)-6、IL-12、TNF-α和IL-1β的产生显著增加,肿瘤生长呈剂量依赖性显著延缓。

    肿瘤微环境高度复杂且存在动态变化,微环境中任意组分的改变都能影响肿瘤的发生与进展[36]。以上研究证实了微生物群在调节肿瘤微环境稳态中具有重要作用,而微生物分泌的c-di-AMP为其中的关键参与者。以肿瘤微环境中细菌c-di-AMP诱导的免疫反应为切入点,可能为肿瘤的免疫治疗提供新的思路。

    疫苗接种是预防传染病和流行病的最有效策略之一。其主要目标是产生强大而持久的免疫反应,能够保护宿主免受传染病的侵害[37]。灭活疫苗、亚单位疫苗和DNA重组疫苗的免疫原性一般较差,且在不同人群中的保护效率各不相同,常通过添加佐剂提高疫苗的免疫原性。

    免疫佐剂即非特异性免疫增生剂,指那些同抗原一起或预先注入宿主体内,能增强机体对外来抗原的免疫应答能力的辅助物质[38]。佐剂不仅对于获得强大的免疫反应至关重要,而且它们还能够减少抗原剂量,加速建立保护性免疫的过程,刺激长期免疫记忆[39]。研究开发新型免疫佐剂,对疫苗的研发具有深远的意义。

    多项研究证实,作为一种vita-PAMPs,c-di-AMP具有良好的免疫刺激和免疫调节特性,以及它们在疫苗佐剂的研发中具有巨大潜力[2, 40-41]。近年来,研究最广泛的便是c-di-AMP在重组卡介苗中的应用。卡介苗是一种抗结核病的减毒活疫苗,并且仍然是全球最常用的疫苗。然而,卡介苗在成人中的保护效率各不相同,并且在免疫功能低下的人群中存在安全问题[42]。因此,有必要开发一种有效的用于预防结核病流行的新型疫苗。

    NING等[43]构建了过表达腺苷酸环化酶DAC的重组卡介苗。并对小鼠进行皮下注射,研究发现,在注射重组卡介苗的小鼠中,脾淋巴细胞产生更多,并分泌更多的IFN-Ⅰ、IL-2和IL-10等炎症因子,说明c-di-AMP的升高增强了卡介苗的免疫原性,从而在巨噬细胞和小鼠中诱导更强的免疫反应。除此之外,SINGH等[44]研究发现,过表达腺苷酸环化酶DAC的重组卡介苗对巨噬细胞进行表观遗传重编程,并在更大程度上增强宿主的训练免疫。

    黏膜疫苗可在黏膜组织构建机体的第一道防御,然而由于传统的重组疫苗免疫原性较弱以及鼻腔复杂的生理特点,导致鼻用疫苗的适用范围较局限,亟需开发新型免疫佐剂,提高鼻用疫苗的免疫应答效率[45-46]。c-di-AMP作为黏膜佐剂可增强亚单位疫苗的免疫原性,SANCHEZ等[47]的研究证明了鼻内施用含有c-di-AMP的rNP流感疫苗,可在全身和黏膜水平上刺激体液和细胞特异性免疫反应,从而有效保护免受流感病毒攻击。c-di-AMP作为β-半乳糖苷酶的黏膜佐剂可以在小鼠模型中诱导特异性IgG和sIgA分泌以及Th1/Th2/Th17细胞的分化[41]

    一定程度上单一佐剂的使用无法覆盖种类繁多的病原体感染。近期投放市场的疫苗配方也证明,不同佐剂例如AS04和AS01的联合使用将产生更强的免疫效力[48]。GARÇON等[49]证实明矾/c-di-AMP的佐剂系统可以克服单一使用明矾诱导体液免疫能力较弱的限制,不仅进一步增强刺激的抗原特异性体液反应,同时促进Th1和细胞毒性T细胞反应的刺激,提高疫苗的效力。

    基于c-di-AMP调节细菌自身生理学的特点,以及诱导宿主免疫反应的能力,c-di-AMP作为vita-PAMPs在减毒活疫苗中的应用前景巨大,有望更好解决灭活疫苗、亚单位疫苗和DNA重组疫苗免疫效率低以及诱导体液免疫能力相对较差的局限性,为疫苗的研发提供较好的发展前景。

    目前对c-di-AMP的研究取得了巨大的进展,使人们能够更好地了解这种第二信使如何参与不同的信号通路来介导细菌环境适应以及诱导宿主免疫反应。

    近年来,c-di-AMP已成为免疫治疗相关研究的一大热点方向。研究已初步证实c-di-AMP具有良好的免疫调节特性以及诱导训练免疫的能力,其在癌症、系统性炎症、细菌感染等多种动物模型中也有较好的治疗效果。研究发现多种利用细菌作为疫苗来治疗癌症的方法,通常使用减毒菌株作为疫苗载体,利用细菌的内在能力入侵抗原提呈细胞,并工程化表达肿瘤相关抗原或针对每个患者个性化的独特新表位,用以激活宿主体内免疫反应,如鼠伤寒沙门氏菌、诺氏梭菌和单核细胞增生李斯特菌有望作为新型疫苗运用于癌症治疗[50-51]。基于上述针对细菌运用于肿瘤治疗的探索,多项研究开发出可表达c-di-AMP的工程菌并作为疫苗应用于临床[34, 44],相较于野生菌株,表达c-di-AMP的菌株可在宿主体内诱发更强烈的免疫反应,改善肿瘤微环境,产生较好的疗效。例如,过表达c-di-AMP的卡介苗已作为非肌肉浸润性膀胱癌的免疫治疗投入临床[44]。在益生菌如乳酸杆菌中表达疫苗抗原和c-di-AMP甚至可能开发一种新型的口服疫苗[52]

    但c-di-AMP仍有许多问题有待进一步探索。首先,开发新型疫苗需要设计并量产可以表达c-di-AMP的工程菌,如何选择对人体无害且可以大量表达c-di-AMP的菌株是一项严峻的挑战。其次,正如在细菌体内c-di-AMP的浓度受到非常严格的控制,浓度的增加或减少都可改变细菌本身的生理功能[53]。IFN-Ⅰ反应对宿主产生的免疫效应也不一定是正向的,可能对感染结果产生积极或消极影响,这取决于感染的物种、部位以及宿主的免疫状态[54]

    c-di-AMP是一种复杂的调节元件,除了革兰阳性菌,革兰阴性菌如大肠杆菌、伤寒沙门氏菌等感染也会对机体造成不良影响,且存在更多耐药菌株。对革兰阴性菌c-di-AMP系统的探索亟待今后进一步研究。

    综上所述,c-di-AMP作为由细菌产生的一种新型第二信使,在细菌自身稳态维持,调控宿主免疫应答等方面具有重要作用。阐明c-di-AMP在免疫中的巨大潜力,为今后临床上解决细菌耐药、感染控制、肿瘤防治以及疫苗开发提供了新的思路。

    *    *    *

    利益冲突 所有作者均声明不存在利益冲突

  • [1]

    WITTE G, HARTUNG S, BUTTNER K, et al. Structural biochemistry of a bacterial checkpoint protein reveals diadenylate cyclase activity regulated by DNA recombination intermediates. Mol Cell,2008,30(2): 167–178. DOI: 10.1016/j.molcel.2008.02.020

    [2]

    WHITELEY A T, GARELIS N E, PETERSON B N, et al. c-di-AMP modulates Listeria monocytogenes central metabolism to regulate growth, antibiotic resistance and osmoregulation. Mol Microbiol,2017,104(2): 212–233. DOI: 10.1111/mmi.13622

    [3]

    LI L, LI Y, ZHU F, et al. New mechanistic insights into purine biosynthesis with second messenger c-di-AMP in relation to biofilm-related persistent methicillin-resistant Staphylococcus aureus infections. mBio, 2021, 12(6): e0208121[2022-10-06]. https://doi.org/10.1128/mBio.02081-21.

    [4]

    BAI Y, YANG J, EISELE L E, et al. Two DHH subfamily 1 proteins in Streptococcus pneumoniae possess cyclic di-AMP phosphodiesterase activity and affect bacterial growth and virulence. J Bacteriol,2013,195(22): 5123–5132. DOI: 10.1128/JB.00769-13

    [5]

    KONNO H, YOSHIDA Y, NAGANO K, et al. Biological and biochemical roles of two distinct cyclic dimeric adenosine 3′, 5′-monophosphate-associated phosphodiesterases in Streptococcus mutans. Front Microbiol, 2018, 9: 2347[2022-10-06]. https://doi.org/10.3389/fmicb.2018.02347.

    [6]

    BARKER J R, KOESTLER B J, CARPENTER V K, et al. STING-dependent recognition of cyclic di-AMP mediates type Ⅰ interferon responses during Chlamydia trachomatis infection. mBio, 2013, 4(3): e00018−13[2022-06-10]. https://doi.org/10.1128/mBio.00018-13.

    [7]

    YIN W, CAI X, MA H, et al. A decade of research on the second messenger c-di-AMP. FEMS Microbiol Rev,2020,44(6): 701–724. DOI: 10.1093/femsre/fuaa019

    [8]

    XIONG Z Q, FAN Y Z, SONG X, et al. The second messenger c-di-AMP mediates bacterial exopolysaccharide biosynthesis: A review. Mol Biol Rep,2020,47(11): 9149–9157. DOI: 10.1007/s11033-020-05930-5

    [9]

    HE J, YIN W, GALPERIN M Y, et al. Cyclic di-AMP, a second messenger of primary importance: tertiary structures and binding mechanisms. Nucleic Acids Res,2020,48(6): 2807–2829. DOI: 10.1093/nar/gkaa112

    [10]

    ZINDEL J, KUBES P. DAMPs, PAMPs, and LAMPs in immunity and sterile inflammation. Annu Rev Pathol,2020,15: 493–518. DOI: 10.1146/annurev-pathmechdis-012419-032847

    [11]

    BARBET G, SANDER L E, GESWELL M, et al. Sensing microbial viability through bacterial RNA augments T follicular helper cell and antibody responses. Immunity, 2018, 48(3): 584−98.e5[2022-10-06]. https://doi.org/10.1016/j.immuni.2018.02.015.

    [12]

    BLANDER J M, BARBET G. Exploiting vita-PAMPs in vaccines. Curr Opin Pharmacol,2018,41: 128–136. DOI: 10.1016/j.coph.2018.05.012

    [13]

    XIA P, WANG S, XIONG Z, et al. The ER membrane adaptor ERAdP senses the bacterial second messenger c-di-AMP and initiates anti-bacterial immunity. Nat Immunol,2018,19(2): 141–150. DOI: 10.1038/s41590-017-0014-x

    [14]

    DEVAUX L, KAMINSKI P A, TRIEU-CUOT P, et al. Cyclic di-AMP in host-pathogen interactions. Curr Opin Microbiol,2018,41: 21–28. DOI: 10.1016/j.mib.2017.11.007

    [15]

    VILA I K, CHAMMA H, STEER A, et al. STING orchestrates the crosstalk between polyunsaturated fatty acid metabolism and inflammatory responses. Cell Metab, 2022, 34(1): 125−139.e8[2022-06-10]. https://doi.org/10.1016/j.cmet.2021.12.007.

    [16]

    HOPFNER K P, HORNUNG V. Molecular mechanisms and cellular functions of cGAS-STING signalling. Nat Rev Mol Cell Biol,2020,21(9): 501–521. DOI: 10.1038/s41580-020-0244-x

    [17]

    LIU H, MOURA-ALVES P, PEI G, et al. cGAS facilitates sensing of extracellular cyclic dinucleotides to activate innate immunity. EMBO Rep, 2019, 20(4): e46293[2022-06-10]. https://doi.org/10.15252/embr.201846293.

    [18]

    ALI S, MANN-NÜTTEL R, SCHULZE A, et al. Sources of type Ⅰ interferons in infectious immunity: plasmacytoid dendritic cells not always in the driver's seat. Front Immunol, 2019, 10: 778[2022-10-06]. https://doi.org/10.3389/fimmu.2019.00778.

    [19]

    FISHER R A, GOLLAN B, HELAINE S. Persistent bacterial infections and persister cells. Nat Rev Microbiol,2017,15(8): 453–464. DOI: 10.1038/nrmicro.2017.42

    [20]

    LOUIE A, BHANDULA V, PORTNOY D A. Secretion of c-di-AMP by Listeria monocytogenes leads to a STING-dependent antibacterial response during enterocolitis. Infect Immun, 2020, 88(12): e00407−20[2022-06-10]. https://doi.org/10.1128/IAI.00407-20.

    [21]

    YANG J, BAI Y, ZHANG Y, et al. Deletion of the cyclic di-AMP phosphodiesterase gene (cnpB) in Mycobacterium tuberculosis leads to reduced virulence in a mouse model of infection. Mol Microbiol,2014,93(1): 65–79. DOI: 10.1111/mmi.12641

    [22]

    HUYNH T N, LUO S, PENSINGER D, et al. An HD-domain phosphodiesterase mediates cooperative hydrolysis of c-di-AMP to affect bacterial growth and virulence. Proc Natl Acad Sci U S A, 2015, 112(7): E747−E756[2022-06-10]. https://doi.org/10.1073/pnas.1416485112.

    [23]

    VAN HAUWERMEIREN F, VAN OPDENBOSCH N, VAN GORP H, et al. Bacillus anthracis induces NLRP3 inflammasome activation and caspase-8-mediated apoptosis of macrophages to promote lethal anthrax. Proc Natl Acad Sci U S A, 2022, 119(2): E747−E745[2022-06-10]. https://doi.org/10.1073/pnas.1416485112.

    [24]

    HU J, ZHANG G, LIANG L, et al. Increased excess intracellular cyclic di-AMP levels impair growth and virulence of Bacillus anthracis. J Bacteriol, 2020, 202(9): e00653-19[2022-06-10]. https://doi.org/10.1128/JB.00653-19.

    [25]

    ZHONG G. Chlamydia overcomes multiple gastrointestinal barriers to achieve long-lasting colonization. Trends Microbiol,2021,29(11): 1004–1012. DOI: 10.1016/j.tim.2021.03.011

    [26]

    DUMAUTHIOZ N, LABIANO S, ROMERO P. Tumor resident memory T cells: New players in immune surveillance and therapy. Front Immunol, 2018, 9: 207[2022-06-10]. https://doi.org/10.3389/fimmu.2018.02076.

    [27]

    WONG-ROLLE A, WEI H K, ZHAO C, et al. Unexpected guests in the tumor microenvironment: Microbiome in cancer. Protein Cell,2021,12(5): 426–435. DOI: 10.1007/s13238-020-00813-8

    [28]

    ZHANG Y, ZHANG Z. The history and advances in cancer immunotherapy: Understanding the characteristics of tumor-infiltrating immune cells and their therapeutic implications. Cell Mol Immunol,2020,17(8): 807–821. DOI: 10.1038/s41423-020-0488-6

    [29]

    JIANG M, CHEN P, WANG L, et al. cGAS-STING, an important pathway in cancer immunotherapy. J Hematol Oncol,2020,13(1): 81. DOI: 10.1186/s13045-020-00916-z

    [30]

    DING C, SONG Z, SHEN A, et al. Small molecules targeting the innate immune cGAS-STING-TBK1 signaling pathway. Acta Pharm Sin B,2020,10(12): 2272–2298. DOI: 10.1016/j.apsb.2020.03.001

    [31]

    LEVENTHAL D S, SOKOLOVSKA A, LI N, et al. Immunotherapy with engineered bacteria by targeting the STING pathway for anti-tumor immunity. Nat Commun,2020,11(1): 2739. DOI: 10.1038/s41467-020-16602-0

    [32]

    SU T, ZHANG Y, VALERIE K, et al. STING activation in cancer immunotherapy. Theranostics,2019,9(25): 7759–7771. DOI: 10.7150/thno.37574

    [33]

    PEI J, ZHANG Y, LUO Q, et al. STAT3 inhibition enhances CDN-induced STING signaling and antitumor immunity. Cancer Lett,2019,450: 110–122. DOI: 10.1016/j.canlet.2019.02.029

    [34]

    LAM K C, ARAYA R E, HUANG A, et al. Microbiota triggers STING-type Ⅰ IFN-dependent monocyte reprogramming of the tumor microenvironment. Cell, 2021, 184(21): 5338−56.e21[2022-06-10]. https://doi.org/10.1016/j.cell.2021.09.019.

    [35]

    ZHAI Q, FENG S, ARJAN N, et al. A next generation probiotic, Akkermansia muciniphila. Crit Rev Food Sci Nutr,2019,59(19): 3227–3236. DOI: 10.1080/10408398.2018.1517725

    [36]

    BARADARAN A, ASADZADEH Z, HEMMAT N, et al. The cross-talk between tumor-associated macrophages and tumor endothelium: Recent advances in macrophage-based cancer immunotherapy. Biomed Pharmacother, 2022, 146(8): 11258[2022-06-10]. https://doi.org/10.1016/j.biopha.2021.112588.

    [37]

    GBD 2016 Lower Respiratory Infections Collaborators. Estimates of the global, regional, and national morbidity, mortality, and aetiologies of lower respiratory infections in 195 countries, 1990-2016: A systematic analysis for the Global Burden of Disease Study 2016. Lancet Infect Dis,2018,18(11): 1191–1210. DOI: 10.1016/S1473-3099(18)30310-4

    [38]

    LAVELLE E C, WARD R W. Mucosal vaccines--Fortifying the frontiers. Nat Rev Immunol,2022,22(4): 236–250. DOI: 10.1038/s41577-021-00583-2

    [39]

    PULENDRAN B, P S A, O'HAGAN D T. Emerging concepts in the science of vaccine adjuvants. Nat Rev Drug Discov,2021,20(6): 454–475. DOI: 10.1038/s41573-021-00163-y

    [40]

    MORETTI J, ROY S, BOZEC D, et al. STING senses microbial viability to orchestrate stress-mediated autophagy of the endoplasmic reticulum. Cell, 2017, 171(4): 809−823.e13[2022-06-10]. https://doi.org/10.1016/j.cell.2017.09.034.

    [41]

    EBENSEN T, LIBANOVA R, SCHULZE K, et al. Bis-(3′, 5′)-cyclic dimeric adenosine monophosphate: Strong Th1/Th2/Th17 promoting mucosal adjuvant. Vaccine,2011,29(32): 5210–5220. DOI: 10.1016/j.vaccine.2011.05.026

    [42]

    LANGE C, AABY P, BEHR M A, et al. 100 years of Mycobacterium bovis bacille Calmette-Guérin. Lancet Infect Dis, 2022, 22(1): e2−e12[2022-06-10]. https://doi.org/10.1016/S1473-3099(21)00403-5.

    [43]

    NING H, WANG L, ZHOU J, et al. Recombinant BCG with bacterial signaling molecule cyclic di-AMP as endogenous adjuvant induces elevated immune responses after Mycobacterium tuberculosis infection. Front Immunol, 2019, 10: 151[2022-06-10]. https://doi.org/10.3389/fimmu.2019.01519.

    [44]

    SINGH A K, PRAHARAJ M, LOMBARDO K A, et al. Re-engineered BCG overexpressing cyclic di-AMP augments trained immunity and exhibits improved efficacy against bladder cancer. Nat Commun,2022,13(1): 878. DOI: 10.1038/s41467-022-28509-z

    [45] 刘霞, 白国辉. 鼻黏膜免疫佐剂提高疫苗免疫效应的作用机制及进展. 重庆医科大学学报,2021,46(10): 1276–1280. DOI: 10.13406/j.cnki.cyxb.002690
    [46]

    SCHULZE K, EBENSEN T, BABIUK L A, et al. Intranasal vaccination with an adjuvanted polyphosphazenes nanoparticle-based vaccine formulation stimulates protective immune responses in mice. Nanomedicine,2017,13(7): 2169–2178. DOI: 10.1016/j.nano.2017.05.012

    [47]

    SANCHEZ M V, EBENSEN T, SCHULZE K, et al. Intranasal delivery of influenza rNP adjuvanted with c-di-AMP induces strong humoral and cellular immune responses and provides protection against virus challenge. PLoS One, 2014, 9(8): e10482[2022-06-10]. https://doi.org/10.1371/journal.pone.0104824.

    [48]

    BURNY W, CALLEGARO A, BECHTOLD V, et al. Different adjuvants induce common innate pathways that are associated with enhanced adaptive responses against a model antigen in humans. Front Immunol, 2017, 8: 943[2022-06-10]. https://doi.org/10.3389/fimmu.2017.00943.

    [49]

    GARÇON N, DI PASQUALE A. From discovery to licensure, the adjuvant system story. Hum Vaccin Immunother,2017,13(1): 19–33. DOI: 10.1080/21645515.2016.1225635

    [50]

    FELGNER S, KOCIJANCIC D, FRAHM M, et al. Bacteria in cancer therapy: Renaissance of an Old concept. Int J Microbiol, 2016, 2016: 8451728[2022-06-10]. https://doi.org/10.1155/2016/8451728.

    [51]

    WOOD L M, PATERSON Y. Attenuated Listeria monocytogenes: A powerful and versatile vector for the future of tumor immunotherapy. Front Cell Infect Microbiol, 2014, 4: 5[2022-06-10]. https://doi.org/10.3389/fcimb.2014.00051.

    [52]

    PACINI M F, GONZÁLEZ F B, DINATALE B, et al. Nasal immunization with aL. lactis-derived trans-sialidase antigen plus c-di-AMP protects against acute oral T. cruzi infection. Vaccine,2022,40(15): 2311–2323. DOI: 10.1016/j.vaccine.2022.02.071

    [53]

    COMMICHAU F M, HEIDEMANN J L, FICNER R, et al. Making and breaking of an essential poison: the cyclases and phosphodiesterases that produce and degrade the essential second messenger cyclic di-AMP in bacteria. J Bacteriol, 2019, 201(1): e00462-18[2022-06-10]. https://doi.org/10.1128/JB.00462-18.

    [54]

    CASTIGLIA V, PIERSIGILLI A, EBNER F, et al. Type Ⅰ interferon signaling prevents IL-1β-driven lethal systemic hyperinflammation during invasive bacterial infection of soft tissue. Cell Host Microbe,2016,19(3): 375–387. DOI: 10.1016/j.chom.2016.02.003

  • 期刊类型引用(2)

    1. 孙慧,田湉,熊廷蓉,邹全明,张笑恺,杨宪,王于. 印苦楝内酯靶向RNF114治疗金黄色葡萄球菌急性肺炎. 陆军军医大学学报. 2024(12): 1353-1360 . 百度学术
    2. 王海艳,洪丽娟,陈绵聪,史莉雅,覃雪. PCT、SAA及Treg因子检测在多重耐药菌感染抗菌治疗中的价值. 分子诊断与治疗杂志. 2024(08): 1511-1514+1519 . 百度学术

    其他类型引用(0)

计量
  • 文章访问数:  861
  • HTML全文浏览量:  389
  • PDF下载量:  62
  • 被引次数: 2
出版历程
  • 收稿日期:  2022-06-22
  • 修回日期:  2022-10-07
  • 网络出版日期:  2022-11-28
  • 发布日期:  2022-11-19

目录

/

返回文章
返回