欢迎来到《四川大学学报(医学版)》 2025年6月22日 星期日

探讨单次屏气压缩感知实时电影成像在磁共振心室功能及应变评估中的可行性

邓巧, 唐露, 伍希, 吴韬, 何帅, 李磊, 程巍, 刁乙珂, 刁凯悦, 岳文军, 陈玉成, 孙家瑜

邓巧, 唐露, 伍希, 等. 探讨单次屏气压缩感知实时电影成像在磁共振心室功能及应变评估中的可行性[J]. 四川大学学报(医学版), 2022, 53(3): 497-503. DOI: 10.12182/20220560506
引用本文: 邓巧, 唐露, 伍希, 等. 探讨单次屏气压缩感知实时电影成像在磁共振心室功能及应变评估中的可行性[J]. 四川大学学报(医学版), 2022, 53(3): 497-503. DOI: 10.12182/20220560506
DENG Qiao, TANG Lu, WU Xi, et al. Feasibility of Single-Breath-Hold Compressed Sensing Real-Time Cine Imaging for Assessment of Ventricular Function and Left Ventricular Strain in Cardiac Magnetic Resonance[J]. Journal of Sichuan University (Medical Sciences), 2022, 53(3): 497-503. DOI: 10.12182/20220560506
Citation: DENG Qiao, TANG Lu, WU Xi, et al. Feasibility of Single-Breath-Hold Compressed Sensing Real-Time Cine Imaging for Assessment of Ventricular Function and Left Ventricular Strain in Cardiac Magnetic Resonance[J]. Journal of Sichuan University (Medical Sciences), 2022, 53(3): 497-503. DOI: 10.12182/20220560506

探讨单次屏气压缩感知实时电影成像在磁共振心室功能及应变评估中的可行性

基金项目: 四川省科技厅重点研发项目(No. 2020YFS0123)资助
详细信息
    通讯作者:

    孙家瑜: E-mail:sunjiayu@wchscu.cn

Feasibility of Single-Breath-Hold Compressed Sensing Real-Time Cine Imaging for Assessment of Ventricular Function and Left Ventricular Strain in Cardiac Magnetic Resonance

More Information
  • 摘要:
      目的  探讨磁共振单次屏气压缩感知实时电影成像(single-breath-hold compressed sensing real-time cine imaging, CS-cine)在心室功能及应变评估中的可行性。
      方法  前瞻性连续纳入70例受检者,所有患者均行心脏磁共振标准稳态自由进动电影成像(standard steady-state free precession cine imaging, sta-cine)和CS-cine。电影序列扫描方位:从心底到心尖的连续短轴位及左室两腔、三腔、四腔长轴位,同一受检者的两组电影图像扫描范围、层数、层厚、层间距等一致。对所有电影图像进行主观图像质量评价,并通过后处理软件分析得出左、右常规心室功能参数和左室应变参数。比较两组电影图像质量、常规心室功能参数及左室应变参数之间的差异。通过计算组内相关系数(ICC)验证CS-cine心室定量参数的重复性,采用Bland-Altman分析两组电影间心室定量参数的一致性。
      结果  sta-cine组、CS-cine组电影的中位采集时间分别为272 s和21 s。sta-cine组、CS-cine组电影图像质量评分中位数分别为4分和2分,差异有统计学意义(P<0.001)。两组电影间常规心室功能参数比较:CS-cine所获得的射血分数(ejection fraction, EF)、舒张末期容积(end-diastolic volume, EDV)、搏出量(stroke volume, SV)均显著降低(P<0.001),而左、右室收缩末期容积(end-systolic volume, ESV)及左室心肌质量(left ventricular mass, LVmass)差异无统计学意义(P>0.05)。两组电影间应变参数比较:左室中部径向应变峰值(peak radial strain, PRS)、周向应变峰值(peak circumferential strain, PCS)及纵向应变峰值(peak longitudinal strain, PLS)差异均有统计学意义(P<0.001)。CS-cine各功能定量参数都具有较好的重复性(ICC=0.88~0.99),Bland-Altman分析结果显示各参数测量中,右室容积功能及左室PCS、PLS测量有95%以上在一致性范围内,其余参数测量结果均有91%以上在一致性界值内,可认为两组电影测量结果一致性较好。
      结论  CS-cine能够快速获取图像进行心功能定量分析,其分析所得常规心室功能参数及左室整体应变参数有较好的重复性。

     

    Abstract:
      Objective  To explore the feasibility of single-breath-hold compressed sensing real-time cine imaging (CS-cine) in the assessment of ventricular function and left ventricular (LV) strain.
      Methods  A total of 70 subjects were enrolled prospectively, and all subjects underwent cardiac magnetic resonance imaging (cardiac MRI) using both the standard steady-state free procession cine (sta-cine) acquisition and a prototype CS-cine sequence. For both CS-cine and sta-cine imaging, continuous short-axis cine images were acquired from the base to the apex to cover the entire left ventricle, and long-axis cine images including two-, three-, and four-chamber views were also acquired. The scanning range, number of slices, slice thickness and intervals were kept identical for the two cine images of the same participant. Subjective evaluation of the image quality was performed on all cine images. For both sequences, the conventional function parameters of the left and the right ventricles and LV strain values were assessed with post-processing software analysis. The cine image quality, conventional ventricular function parameters, and LV strain values were compared between the two cine groups and the differences were examined. Inter- and intraobserver agreements for CS-cine images were measured using intraclass correlation coefficient (ICC). Bland-Altman analysis was performed to assess reproducibility between the two cine methods.
      Results  The median scanning time of CS-cine was 21 s versus 272 s for sta-cine (P<0.001). The median image quality scores of two groups were significantly different, 4 points for sta-cine and 2 points for CS-cine (P<0.001). Bi-ventricular end-diastolic volumes (EDV), stroke volume (SV) and ejection fraction (EF) were significantly smaller in CS-cine (P<0.001). Nevertheless, no significant differences between the two groups in bi-ventricular ESV or LV mass were observed (P>0.05). LV strain parameters, including the peak radial strain, peak circumferential strain and peak longitudinal strain derived from LV mid-ventricular slice, were significantly different in the two sequences (P<0.001). Moreover, CS-cine-derived functional parameters and strain measurements have a good correlation with those of sta-cine (for RV function parameters, and left ventricular PLS, PCS values, more than 95% points fell within the limits of agreement [LoA]; meanwhile, more than 91% points fell within the LoA for other parameters) and inter- and intraobserver agreements were strong (ICC=0.88 to 0.99) for CS-cine.
      Conclusion  CS-cine can well realize the rapid acquisition of cine images for quantitative analysis of cardiac function, and the conventional ventricular function parameters and LV globalized strain values obtained from CS-cine imaging have good reproducibility.

     

  • 图  1   sta-cine及CS-cine电影图像

    Figure  1.   Images acquired from sta-cine and CS-cine

    A: sta-cine end-diastolic basal short-axis slice; B: sta-cine end-diastolic mid-ventricular short-axis slice; C: sta-cine end-diastolic 4-chamber long-axis slices; D: CS-cine end-diastolic basal short-axis slice; E: CS-cine end-diastolic mid-ventricular short-axis slice; F: CS-cine end-diastolic 4-chamber long-axis slices.

    图  2   CS-cine与sta-cine心室功能参数测量结果的一致性检验(n=62)

    Figure  2.   The consistency of volumetric measurement between CS-cine and sta-cine (n=62)

    图  3   CS-cine与sta-cine左室应变参数的一致性检验(n=62)

    Figure  3.   The consistency of LV strain values between CS-cine and sta-cine (n=62)

    表  1   扫描参数

    Table  1   Imaging parameters

    Parametersta-cineCS-cine
    ECG-gating Retrospective Adaptive-prospective
    TE/ms 1.43 1.23
    Repetition time/ms 3.3 2.9
    FOV 320 mm×340 mm 320 mm×340 mm
    Voxel size 1.6 mm×1.6 mm×
    8.0 mm
    1.6 mm×1.6 mm×
    8.0 mm
    Temporal resolution/ms 31.7-56.2 41.5-57.1
    Slice thickness/mm 8-11 8-11
    Flip angle degrees 50 50
    Sequences defination Segments Single shot
    Band width/(Hz/Px) 962 962
    Calculated phases 25 25
     ECG: electrocardiography; TE: Echo time; FOV: Field of view.
    下载: 导出CSV

    表  2   两组电影常规心功能参数比较〔中位数(四分位间距)〕

    Table  2   Comparison of the bi-ventricular conventional function parameters between two groups (median [P25, P75])

    Parameterssta-cine group (n=62)CS-cine group (n=62)P
    LVEF/% 61.77 (47.33, 66.27) 58.68 (42.59, 63.99) <0.001
    LVEDV/mL 148.22 (123.01, 182.81) 139.45 (112.29, 181.17) <0.001
    LVESV/mL 56.22 (42.17, 97.85) 55.68 (42.45, 94.89) 0.702
    LVSV/mL 80.97 (70.56, 95.83) 72.99 (66.01, 86.14) <0.001
    LVmass/g 86.29 (66.26, 115.25) 85.37 (65.66, 119.30) 0.558
    RVEF/% 55.68 (51.08, 61.10) 52.06 (48.04, 58.79) <0.001
    RVEDV/mL 126.92 (103.90, 148.95) 119.55 (100.52, 145.77) <0.001
    RVESV/mL 53.31 (46.58, 66.65) 55.29 (45.36, 68.35) 0.438
    RVSV/mL 70.30 (56.11, 83.20) 63.50 (51.07, 77.78) <0.001
     LVEF: Left ventricular ejection fraction; LVEDV: Left ventricular end-diastolic volume; LVESV: Left ventricular end-systolic volume; LVSV: Left ventricular stroke volume; LVmass: Left ventricular mass; RVEF: Right ventricular ejection fraction; RVEDV: Right ventricular end-diastolic volume; RVESV: Right ventricular end-systolic volume; RVSV: Right ventricular stroke volume.
    下载: 导出CSV

    表  3   两组电影左室应变峰值比较〔中位数(四分位间距)〕

    Table  3   Comparison of the LV peak strain values between two groups (median [P25, P75])

    Parameterssta-cine group (n=62)CS-cine group (n=62)P
    PRS/% 38.54 (28.12, 45.33) 29.61 (19.98, 36.53) <0.001
    PCS/% −16.42 (−18.57, −12.78) −12.98 (−14.58, −10.26) <0.001
    PLS/% −13.76 (−15.67, −11.41) −9.19 (−10.48, −7.30) <0.001
     PRS: Peak radial srain; PCS: Peak circumferential strain; PLS: Peak longitudinal strain.
    下载: 导出CSV

    表  4   CS-cine常规心室功能参数组间及组内ICCn=62)

    Table  4   Intraobserver and interobserver variability of conventional ventricular function parameters for CS-cine (n=62)

    ParametersICC
    InterobserverIntraobserver
    LVEF/% 0.9735 0.9726
    LVEDV/mL 0.9876 0.9868
    LVESV/mL 0.9911 0.9949
    LVSV/mL 0.9339 0.9014
    LVmass/g 0.8921 0.8924
    RVEF/% 0.9012 0.9005
    RVEDV/mL 0.9815 0.9545
    RVESV/mL 0.9683 0.9744
    RVSV/mL 0.8809 0.8908
     LVEF: Left ventricular ejection fraction; LVEDV: Left ventricular end-diastolic volume; LVESV: Left ventricular end-systolic volume; LVSV: Left ventricular stroke volume; LVmass: Left ventricular mass; RVEF: Right ventricular ejection fraction; RVEDV: Right ventricular end-diastolic volume; RVESV: Right ventricular end-systolic volume; RVSV: Right ventricular stroke volume.
    下载: 导出CSV

    表  5   CS-cine左室应变参数组间及组内ICCn=62)

    Table  5   Intraobserver and interobserver variability of LV stain values for CS-cine (n=62)

    ParametersICC
    InterobserverIntraobserver
    PRS/%
    0.9962 0.9912
    PCS/%
    0.9927 0.9777
    PLS/%
    0.9790 0.9789
     PRS: Peak radial srain; PCS: Peak circumferential strain; PLS: Peak longitudinal strain.
    下载: 导出CSV
  • [1]

    KALOGEROPOULOS A P, KIM S, RAWAL S, et al. Serial changes in left ventricular ejection fraction and outcomes in outpatients with heart failure and preserved ejection fraction. Am J Cardiol,2019,124(5): 729–735. DOI: 10.1016/j.amjcard.2019.05.052

    [2]

    FARMAKIS D, SIMITSIS P, BISTOLA V, et al. Acute heart failure with mid-range left ventricular ejection fraction: Clinical profile, in-hospital management, and short-term outcome. Clin Res Cardiol,2017,106(5): 359–368. DOI: 10.1007/s00392-016-1063-0

    [3]

    CURTIS J P, SOKOL S I, WANG Y, et al. The association of left ventricular ejection fraction, mortality, and cause of death in stable outpatients with heart failure. J Am Coll Cardiol,2003,42(4): 736–742. DOI: 10.1016/s0735-1097(03)00789-7

    [4]

    ALFAKIH K, REID S, JONES T, et al. Assessment of ventricular function and mass by cardiac magnetic resonance imaging. Eur Radiol,2004,14(10): 1813–1822. DOI: 10.1007/s00330-004-2387-0

    [5]

    FENG L, BENKERT T, BLOCK K T, el at. Compressed sensing for body MRI. J Magn Reson Imaging, 2017, 45(4): 966–987. https://doi.org/10.1002/jmri.25547.

    [6] 张桂山, 肖刚, 戴卓智, 等. 压缩感知技术在MRI上的应用. 磁共振成像,2013,4(4): 314–320.
    [7]

    LUSTIG M, DONOHO D, PAULY J M. et al Sparse MRI: The application of compressed sensing for rapid MR imaging. Magn Reson Med,2007,58(6): 1182–1195. DOI: 10.1002/mrm.21391

    [8]

    KIDO T, HIRAI K, OGAWA R, et al. Comparison between conventional and compressed sensing cine cardiovascular magnetic resonance for feature tracking global circumferential strain assessment. J Cardiovasc Magn Reson, 2021, 23(1): 10[2022-03-12]. http://dx.doi.org/10.1186/s12968-021-00708-5.

    [9]

    CHEN Y, QIAN W, LIU W, et al. Feasibility of single-shot compressed sensing cine imaging for analysis of left ventricular function and strain in cardiac MRI. Clin Radiol,2021,76(6): 471.e1–471.e7. DOI: 10.1016/j.crad.2020.12.024

    [10]

    KRAMER C M, BARKHAUSEN J, BUCCIARELLI-DUCCI C, et al. E. Standardized cardiovascular magnetic resonance imaging (CMR) protocols: 2020 update. J Cardiovasc Magn Reson, 2020, 22(1): 17[2022-03-12]. http://dx.doi.org/10.1186/s12968-020-00607-1.

    [11]

    SCHULZ-MENGER J, BLUEMKE D A, BREMERICH J, et al. Standardized image interpretation and post-processing in cardiovascular magnetic resonance—2020 update: Society for Cardiovascular Magnetic Resonance (SCMR): Board of Trustees Task Force on Standardized Post-Processing. J Cardiovasc Magn Reson, 2020, 22(1): 19[2022-03-12].http://dx.doi.org/10.1186/s12968-020-00610-6.

    [12]

    LIU H, YANG D, WAN K, et al. Distribution pattern of left-ventricular myocardial strain analyzed by a cine MRI based deformation registration algorithm in healthy Chinese volunteers. Sci Rep, 2017, 7: 45314[2022-03-12]. http://dx.doi.org/10.1038/srep45314.

    [13]

    LIN K, MENG L, COLLINS J D, et al. Heart deformation analysis: The distribution of regional myocardial motion patterns at left ventricle. Int J Cardiovasc Imaging,2017,33(3): 351–359. DOI: 10.1007/s10554-016-1005-y

    [14]

    LIN K, COLLINS J D, CHOWDHARY V, et al. Heart deformation analysis: Measuring regional myocardial velocity with MR imaging. Int J Cardiovasc Imaging,2016,32(7): 1103–1111. DOI: 10.1007/s10554-016-0879-z

    [15]

    VINCENTI G, MONNEY P, CHAPTINEL J, et al. Compressed sensing single-breath-hold CMR for fast quantification of LV function, volumes, and mass. JACC Cardiovasc Imaging,2014,7(9): 882–892. DOI: 10.1016/j.jcmg.2014.04.016

    [16]

    YANG Y, LIU F, JIN Z Y, et al. Aliasing artefact suppression in compressed sensing MRI for random phase-encode undersampling. IEEE transactions on bio-medical engineering,2015,62(9): 2215–2223. DOI: 10.1109/TBME.2015.2419372

    [17]

    VERMERSCH M, LONGERE B, COISNE A, et al. Compressed sensing real-time cine imaging for assessment of ventricular function, volumes and mass in clinical practice. Eur Radiol,2020,30(1): 609–619. DOI: 10.1007/s00330-019-06341-2

    [18]

    NARAYAN G, NAYAK K, PAULY J, et al. Single-breathhold, four-dimensional, quantitative assessment of LV and RV function using triggered, real-time, steady-state free precession MRI in heart failure patients. J Magn Reson Imaging,2005,22(1): 59–66. DOI: 10.1002/jmri.20358

    [19]

    JAHNKE C, NAGEL E, GEBKER R, et al. Four-dimensional single breathhold magnetic resonance imaging using kt-BLAST enables reliable assessment of left- and right-ventricular volumes and mass. J Magn Reson Imaging,2007,25(4): 737–742. DOI: 10.1002/jmri.20877

    [20]

    EBERLE H C, NASSENSTEIN K, JENSEN C J,et al. Rapid MR assessment of left ventricular systolic function after acute myocardial infarction using single breath-hold cine imaging with the temporal parallel acquisition technique (TPAT) and 4D guide-point modelling analysis of left ventricular function. Eur Radiol,2010,20(1): 73–80. DOI: 10.1007/s00330-009-1522-3

    [21]

    YOUNG A A, COWAN B R, SCHOENBERG S O, et al. Feasibility of single breath-hold left ventricular function with 3 Tesla TSENSE acquisition and 3D modeling analysis. J Cardiovasc Magn Reson, 2008, 10(1): 24[2022-03-12]. http://dx.doi.org/10.1186/1532-429X-10-24.

    [22]

    ALLEN B D, CARR M, BOTELHO M P, et al. Highly accelerated cardiac MRI using iterative SENSE reconstruction: initial clinical experience. Int J Cardiovasc Imaging,2016,32(6): 955–963. DOI: 10.1007/s10554-016-0859-3

    [23]

    XU Y, LI W, WAN K, et al. Myocardial tissue reverse remodeling after guideline-directed medical therapy in idiopathic dilated cardiomyopathy. Circ Heart Fail, 2021, 14(1): e007944[2022-03-12]. http://dx.doi.org/10.1161/CIRCHEARTFAILURE.120.007944.

    [24] 王未, 张龙江, 祁丽, 等. 心血管磁共振特征追踪技术的临床研究进展. 临床放射学杂志,2016,35(8): 1273–1277.
    [25]

    HOR K N, BAUMANN R, PEDRIZZETTI, et al. Magnetic resonance derived myocardial strain assessment using feature tracking. J Vis Exp, 2011 (48): 2356[2022-03-12]. http://www.jove.com/video/2356/. doi: 10.3791/2356.

图(3)  /  表(5)
计量
  • 文章访问数:  1328
  • HTML全文浏览量:  226
  • PDF下载量:  29
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-06
  • 修回日期:  2022-04-08
  • 网络出版日期:  2022-05-24
  • 发布日期:  2022-05-19

目录

    /

    返回文章
    返回