欢迎来到《四川大学学报(医学版)》 2025年6月23日 星期一

口腔菌群与阿尔茨海默症的关系

李语晨, 刘媛, 陈峰, 初明, 陈霄迟

李语晨, 刘媛, 陈峰, 等. 口腔菌群与阿尔茨海默症的关系[J]. 四川大学学报(医学版), 2022, 53(2): 194-200. DOI: 10.12182/20220360304
引用本文: 李语晨, 刘媛, 陈峰, 等. 口腔菌群与阿尔茨海默症的关系[J]. 四川大学学报(医学版), 2022, 53(2): 194-200. DOI: 10.12182/20220360304
LI Yu-chen, LIU Yuan, CHEN Feng, et al. Relationship between Oral Microbiota and Alzheimer's Disease[J]. Journal of Sichuan University (Medical Sciences), 2022, 53(2): 194-200. DOI: 10.12182/20220360304
Citation: LI Yu-chen, LIU Yuan, CHEN Feng, et al. Relationship between Oral Microbiota and Alzheimer's Disease[J]. Journal of Sichuan University (Medical Sciences), 2022, 53(2): 194-200. DOI: 10.12182/20220360304

口腔菌群与阿尔茨海默症的关系

基金项目: 国家自然科学基金(No. 81991501)、口腔疾病研究国家重点实验室开放课题基金(No. SKLOD2021OF03)和北京大学医学部与英国伦敦国王大学联合基金(No. BMU2020KCL003)资助
详细信息
    通讯作者:

    陈峰: E-mail:chenfeng2011@hsc.pku.edu.cn

Relationship between Oral Microbiota and Alzheimer's Disease

More Information
  • 摘要: 阿尔茨海默症(Alzheimer’s disease, AD)是一种常见的神经退行性疾病。在老龄化社会中,AD的高患病率和低生活质量给个人、家庭和社会带来严重困扰,但AD的病因和致病机制并未完全明确,年龄、遗传、环境等因素都与之有关,治疗也没有令人满意的效果。最近有研究表示,口腔菌群失调与AD发病有密切关系,口腔细菌感染可能是引发AD的病因之一。口腔是人体最大的微生物生态系统,其稳态对健康至关重要。口腔菌群紊乱导致的细菌感染会通过直接和间接作用造成大脑内β-淀粉样蛋白(amyloid β-protein, Aβ)代谢失衡,Tau蛋白过磷酸化,沉积形成老年斑和神经原纤维缠结(neurofibrillary tangles, NFTs)损伤神经元。本文根据最新的研究进展,讨论口腔菌群与AD发生的相关性和机制,以及主要口腔细菌的致病机制,探索口腔菌群靶向疗法的潜在应用前景。

     

    Abstract: Alzheimer’s disease (AD) is a common neurodegenerative disease. In an aging society, the high prevalence of AD and the low quality of life of AD patients create serious problems for individuals, families and the society. However, the etiology and pathogenesis of AD are still not fully understood. Age, genetics, environment and other factors are all relevant to AD, and treatment has not achieved satisfactory results. Recent studies have found that oral dysbiosis is closely related to the pathogenesis of AD, and that oral bacterial infection may be one of the causes of AD. Oral cavity is the largest microbial ecosystem of human body, and its homeostasis is critical to health. Bacterial infections caused by oral dysbiosis can directly and indirectly induce the metabolic imbalance of amyloid β-protein (Aβ) in the brain and the hyperphosphorylation of Tau protein. Then, the precipitation forms senile plaques and neurofibrillary tangles (NFTs) that damage neurons. Based on the latest research findings, we herein discussed the correlation between oral microbiota and the pathogenesis of AD and the mechanisms involved, as well as the pathogenic mechanism of main oral bacteria. In addition, we explored the potential application prospects of oral microbiota-targeted therapy.

     

  • 随着老龄化社会的进展,2020年中国60岁及以上人群中阿尔茨海默症(Alzheimer’s disease, AD)患者近1000万[1]。近年来研究发现,口腔菌群失调与AD有密切关系,口腔细菌感染或许是致病因素之一。从口腔健康的角度认识AD的病因或危险因素,可以提供预防和治疗AD的思路,为延缓病情发展提出可能。

    AD是一种神经退行性疾病,是老年人群痴呆的最主要原因,患病率呈逐年上升的趋势,并随着年龄的增加逐渐增高。AD的病因和致病机制并不完全明确,年龄、遗传、抑郁、生活方式等都可能是危险因素,目前公认的致病假说为β-淀粉样蛋白(amyloid β-protein, Aβ)级联假说[2]。假说认为,AD患者脑组织中存在过度积累的Aβ和过磷酸化的Tau蛋白,形成老年斑和神经原纤维缠结(neurofibrillary tangles, NFTs),造成神经元结构与功能的损伤。

    口腔是一个复杂完整的微生物生态系统,其内适宜的温度、湿度和弱碱性唾液为微生物提供了生长繁殖的环境。健康人口腔中约有700多种细菌,其中94%为放线菌、拟杆菌、厚壁菌、梭杆菌、变形菌和螺旋体,未经刺激的唾液中细菌含量达1.5×108 mL-1[3]。这些细菌多为非致病菌,部分为条件致病菌,它们相互依存、彼此拮抗,保持动态平衡,但当细菌种类数量的平衡被打乱、致病菌侵袭或免疫系统破坏时疾病就会发生。菌群紊乱不仅会引起牙周炎、龋齿等口腔疾病,损害口腔的固有功能,也会导致系统性疾病,与心血管疾病、糖尿病和神经系统疾病等有密切关系[4]。随着口腔与全身系统性疾病之间的联系被发现,口腔菌群的重要性逐渐被认识。

    人类微生物组与全身系统性疾病有着密不可分的联系。研究发现,肠道菌群与AD存在相关性,脑肠轴在发病和进展过程中可能发挥重要作用,靶向药物甘露特钠胶囊也被研发用于治疗AD[5]。而口腔作为体内细菌数量种类最多的微生物生态系统,并且其与大脑的解剖距离更近,存在丰富的脑神经,口腔菌群可能与大脑有着更加密切的关系。口腔菌群紊乱引起的口腔疾病与多种系统性疾病有关,这也为其与AD的相关可能性提供基础。

    研究发现,AD患者的牙齿丧失、牙槽骨吸收、菌斑指数较健康对照组更高,并且唾液中含有的细菌丰度和多样性明显低于对照组[6-7]。在口腔疾病与AD相关性的研究中,牙周疾病和龋病患者患AD的风险将更高,并且牙周炎的严重程度与AD患病率呈正相关[8]。中重度牙周炎患者口腔中纤毛菌、真杆菌、龈炎普雷沃菌、纤细弯曲菌等的增加可能与AD的发生和发展有关[9]

    AD患者的脑组织和血液中异常存在口腔细菌及其产生的毒素。在脑组织切片细菌种类和含量的对比中,AD患者脑组织的细菌数量较健康对照组明显增加[10]。更多研究显示,AD患者脑中异常存在密螺旋体、幽门螺杆菌(Helicobacter pylori, H. pylori)、牙龈卟啉单胞菌(Porphyromonas gingivalis, P. gingivalis)等口腔细菌[11-13]。除此之外,P. gingivalis的脂多糖(lipopolysaccharide, LPS)也在患者的大脑中检测到[13]。动物实验显示,口腔细菌能够进入小鼠大脑,P. gingivalis感染小鼠一段时间后在其脑组织中发现了细菌DNA[14]

    综上所述,口腔菌群紊乱是AD的致病因素之一,细菌在特定机制下对中枢神经系统造成损伤,导致AD发生。

    口腔细菌及其产物可以进入脑组织,直接对神经细胞造成影响,可分为侵入和损伤两个过程。

    口腔细菌通过循环或神经系统进入脑组织。

    日常刷牙、咀嚼、牙齿修复等均会造成口腔的细菌进入血液,发生菌血症。而且牙周炎患者的牙周组织糜烂,老年人免疫力降低,口腔细菌更易进入循环系统。在生理状态下,血液中的大分子和细胞由于血脑屏障(blood-brain barrier, BBB)无法进入脑组织,大脑内环境保持相对稳定的状态。但细菌和毒素可以增加BBB的通透性从而实现入侵,研究发现,在平均年龄70岁且认知下降人群中,存在不同程度BBB损伤的比例为13.5%,BBB损伤与认知能力下降之间存在显著相关性[15]。在AD小鼠模型中,给予LPS刺激后小鼠BBB通透性有所增加[16]。除了细菌破坏的因素,机体的老化也会降低BBB的防御能力。最终BBB完整性破坏导致细菌、毒素渗透进入大脑。此外,细菌还可以通过不受BBB保护的侧脑室等血管周空间进入中枢神经系统[17]

    口腔细菌可能直接经神经进入脑组织。AD患者的三叉神经节、脑桥和海马组织中发现密螺旋体的存在,提示口腔细菌可能沿三叉神经侵犯脑组织[18]。另外,口腔细菌也可能通过嗅觉系统引发AD。肺炎衣原体能够经嗅球进入嗅觉皮层和海马组织,螺旋体也可以沿嗅丝和嗅束进入中枢神经系统[19]。以上研究为细菌侵入脑组织的神经途径提供支持,但目前有关细菌感染脑神经引发AD的实验研究较少,还需要未来获取更多的证据来证明。

    侵入脑组织的口腔细菌及毒素可以产生Aβ沉积或诱发神经炎症,产生免疫级联反应,对神经细胞造成损伤(图1)。

    图  1  口腔菌群对脑组织的直接损伤作用
    Figure  1.  Direct damage of oral microflora to brain tissue
    A: Some bacteria can directly produce Aβ precipitation accumulation in brain tissue; B: Microglia are continuously activated by bacteria and toxins entering brain tissue, releasing inflammatory factors and causing neuroinflammation; C: Bacteria and toxins activate the complement system; D: Inflammatory factors and complement fragments promote Aβ precipitation and Tau protein hyperphosphorylation; E: Aβ precipitation and hyperphosphorylation of Tau protein stimulate microglia to produce inflammatory factors that maintain or exacerbate neuroinflammation; F: Excessive Aβ precipitation and hyperphosphorylated Tau protein damage neurons and induce AD. OMV: Outer membrane vesicle; LPS: Lipopolysaccharide; TNF: Tumor necrosis factor; Aβ: Amyloid β-protein; IL-1: Interleukin-1; IL-6: Interleukin-6; IL-12: Interleukin-12; IL-23: Interleukin-23.

    近年来研究发现,肠杆菌、假单胞菌、分枝杆菌、链球菌、葡萄球菌等口腔细菌可以直接在脑组织中产生Aβ沉积,诱发或加重AD[20]。这类细菌能够产生一种以淀粉样蛋白为主要成分的生物膜,保护自身,利于存活,当细菌侵入脑组织后,这种不溶性淀粉样蛋白会聚集形成低聚体,产生Aβ沉积损伤神经细胞。例如大肠杆菌K99和结核分枝杆菌产生的功能性淀粉样蛋白在AD患者脑中聚集[21]

    大量细菌侵入脑组织,产生LPS、外膜囊泡(outer membrane vesicle, OMV)等毒素因子诱发严重的神经炎症,导致神经退行性病变。检测患者脑脊液发现,炎症因子如肿瘤坏死因子(tumor necrosis factor, TNF)、白细胞介素(interleukin, IL)-1、IL-6、IL-10、粒细胞-巨噬细胞集落刺激因子(granulocyte-macrophage colony stimulating factor, GM-CSF)和C-反应蛋白(C-reactive protein, CRP)显著增加[22]。LPS与小胶质细胞表面的CD14、Toll样受体(Toll-like receptors, TLRs)等特异性结合,促进炎症因子释放,引起持续的炎症反应[23]。革兰阴性细菌分泌的含有LPS的OMV也可以调节免疫反应[22]。小胶质细胞是中枢神经系统内主要的免疫细胞,发挥神经保护作用,当中枢神经系统受损和疾病发生时,小胶质细胞被持续激活并释放大量炎症因子,诱导Aβ沉淀和Tau蛋白过磷酸化,导致氧化应激反应,从而对神经细胞产生损伤[24]。而敲除IL-12和IL-23基因的AD小鼠模型中,大脑Aβ沉淀含量会明显减少[25]。此外, 细菌和毒素还可激活补体系统。在P. gingivalis感染小鼠的模型中,脑组织中出现了高水平补体激活片段C3、C9等,参与炎症反应并对小鼠海马组织锥体神经元造成损伤伤[14]。异常沉积的Aβ、过磷酸化Tau蛋白以及凋亡神经细胞成分反过来能够诱导小胶质细胞产生更多的炎症因子,维持神经炎症的发生[26]。但是,目前研究只指出神经炎症诱发AD的结果,关于炎症因子对Aβ沉淀的生成和Tau蛋白过磷酸化的具体作用机制尚不明确,还有待进一步探索。

    口腔细菌引起全身炎症反应、损伤脑血管和调节基因表达三种方式间接引发AD。

    口腔细菌进入循环系统后会激活血液中免疫细胞,产生大量炎症因子与细菌形成对抗。AD患者血浆中TNF、IL-1和IL-6等炎症因子的水平显著升高证明了这一点[23]。而血液中高水平的炎症因子可以引发BBB对全身内环境的响应机制,通过转运和分泌机制渗入脑组织。屏障细胞存在特异性转运体,可以转运特定的细胞因子,炎症因子还可以刺激血管内皮细胞,产生一氧化氮、前列腺素等信号分子,间接诱导下游细胞分泌炎症因子,从而实现进入脑组织的目的[27]。炎症因子的侵入使得脑组织中炎症因子浓度大大升高,也会刺激小胶质细胞的免疫反应,加重神经炎症。见图2

    图  2  细菌、毒素和炎症因子通过BBB途径
    Figure  2.  Bacteria, toxins and inflammatory factors pass through the BBB pathway
    A: Destruction of BBB barrier cells; B: Activating barrier cells to secret nitric oxide (NO), prostaglandin (PG) and other signaling molecules, and promoting brain cells to produce inflammatory factors, such as LPS-stimulated IL-6; C: Cell-specific transporters transporting inflammatory factors, such as TNF transporters. OMV: Outer membrane vesicle; LPS: Lipopolysaccharide; TNF: Tumor necrosis factor; IL-1: Interleukin-1; IL-6: Interleukin-6; BBB: Blood-brain barrier.

    利福平是常用抗生素,服用利福平的AD小鼠脑内Aβ沉淀和过磷酸化Tau蛋白有所减少,小鼠认知功能得到有效的改善[28]。并且AD患者病程初期时服用非甾体类抗炎药后,出现临床症状延迟的现象,为炎症反应的致病机制提供了支持[29]。抗炎疗法也为AD的治疗方案提出新的可能性。

    口腔细菌除了引起全身炎症反应影响神经系统,还可能参与脑血管的损伤。多项研究证据表明,脑血管病理性变化可能是AD的致病因素,约86%的AD患者有多处脑血管损伤[30]

    在龋病致病菌的研究中发现,变异链球菌感染进入中枢神经系统后可能通过激活金属蛋白酶(metalloproteinase, MMPs)损伤脑血管[31]。MMPs能够破坏细胞外基质,在AD发病的过程中,MMP-2参与Aβ的代谢,MMP-3、MMP-9促进Tau蛋白聚集和提高BBB通透性[32]。在动物实验中,血管中存在变异链球菌的大鼠脑出血量是对照组的5~6倍[33]。这一实验证明了口腔细菌在脑血管损伤中的重要作用,脑血管功能降低与AD的发病和进展有着密切联系。在牙周炎研究中发现,细菌产生的LPS可诱导炎症细胞释放自由基和多种酶,损伤血管内皮从而激活凝血系统,形成血栓阻塞脑血管,间接损伤神经细胞。血小板聚集也会促进Aβ沉淀生成,Tau蛋白磷酸化,引发或加重AD[32]。许多研究指出口腔细菌与动脉粥样硬化有关,约77%的AD患者脑血管存在动脉粥样硬化[31]。细菌及毒素进入到脑血管中可能会促进动脉粥样硬化的发生,导致脑组织血流量不足,直接损伤神经细胞,最终引发或加重AD。

    小胶质细胞是口腔细菌引起神经炎症的关键环节,其相关基因在诱发AD中发挥重要作用。TREM-2基因编码的蛋白有免疫调节和神经保护作用,而口腔细菌P. gingivalis的感染明显下调了TREM-2表达,可能会加重神经炎症,进而引起神经细胞凋亡[34]。此外,口腔细菌还可能影响CR1、CD33等基因的表达,导致Aβ的代谢失衡,影响AD的发生和进展过程[35]

    牙龈卟啉单胞菌(Porphyromonas gingivalis, P. gingivalis)是一种革兰氏阴性厌氧球杆菌,具有荚膜、菌毛,能够抵抗机体免疫细胞的攻击,有利于其在体内的生长繁殖。P. gingivalis感染后会引起牙周疾病,并且与心血管疾病、糖尿病、动脉粥样硬化和AD之间存在联系联系[36]。在口腔菌群与AD相关性的研究中,P. gingivalis相关报道较多,其对AD致病过程研究较为全面,能够较好地解释口腔菌群紊乱导致AD发生的机制。

    临床和实验研究发现,P. gingivalis引起的牙周疾病和AD之间可能存在联系。在一项队列研究中发现,牙周炎与AD患者认知功能下降相关,AD患者血清抗P. gingivalis抗体有所增加增加[37]。第三次美国国家健康与营养调查发现,血清抗P. gingivalis抗体的高表达与认知能力下降存在相关性[38]。并且,感染P. gingivalis引起牙周炎的小鼠脑组织中存在TNF、IL-1等多种炎症因子,并与Aβ共定位,提示P. gingivalis可能通过神经炎症诱发AD[39]。更为直接的研究是,AD患者脑组织中存在P. gingivalis的DNA和抗原,其含量远高于对照组[13]。队列研究、观察性研究、信息学等更多研究证明P. gingivalis在AD的发病和进展中存在一定作用[37-41]

    多项研究发现,AD患者脑内异常存在P. gingivalis,其对脑组织的损伤作用是多方面的。P. gingivalis主要通过LPS直接引发AD。注射P. gingivalis LPS的小鼠认知能力有所下降,其机制为细菌LPS促进组织蛋白酶B的表达,加速对淀粉样蛋白前体的裂解,使Aβ过度积累形成老年成老年斑[42-43]P. gingivalis和LPS与细胞表面的CD14、TLR-2、TLR-4等结合,活化小胶质细胞,增加炎症因子的合成,引发神经炎症,导致Aβ沉淀、Tau蛋白过磷酸化[22]P. gingivalis分泌的特异性牙龈蛋白酶也在致病过程中发挥重要作用。牙龈蛋白酶可以裂解C1、C3、C4、C5等补体蛋白,逃避机体免疫系统的杀伤,增强细菌毒力和侵袭性[44]。并且牙龈蛋白酶能够分解神经细胞的细胞骨架,产生易磷酸化的Tau蛋白多肽片段,形成NFTs,具有神经毒性[45]

    P. gingivalis也存在间接损伤脑组织的途径,P. gingivalis可以诱导MMPs合成,损伤BBB,增加其通透性,有利于细菌、LPS和炎症因子等大分子进入脑组织组织[46]。最终Aβ沉淀、过磷酸化Tau蛋白和NFTs产生使神经细胞退化并出现认知障碍。

    螺旋体是具有高活动性革兰阴性细菌,近年研究发现其可能与AD存在一定相关性。螺旋体具有强亲神经性,可能沿三叉神经或嗅神经侵犯脑组织[18]。AD患者的脑组织、血液、脑脊液中螺旋体检出率是对照组的8~10倍,并且梅毒螺旋体和伯氏疏螺旋体可能与AD的相关性更强[47-48]。梅毒螺旋体可引起萎缩性全身麻痹,其在脑组织中产生的Aβ沉淀、NFTs,引起皮质萎缩和痴呆的病例特征与AD高度相似,提示梅毒螺旋体可能是引发AD的致病菌之一[49]。大鼠感染伯氏疏螺旋体后,脑内Aβ沉淀和磷酸化Tau蛋白水平明显升高,可能是大脑损伤机制之一[33]。关于口腔螺旋体引发AD的更多发病机制,目前尚不清楚,还需更多研究探索。

    幽门螺杆菌(Helicobacter pylori, H. pylori)是螺旋形革兰阴性菌,主要存在与口腔和胃肠道中。H. pylori对AD的作用在脑肠轴中研究较多,患者胃黏膜H. pylori检出率远高于对照组,充分研究和实验证明H. pylori可以导致脑内Aβ沉淀增加和磷酸化Tau蛋白形成[50]。口腔也是H. pylori的主要存在部位,并且有更加有利的解剖学位置,H. pylori可以通过循环系统和嗅神经途径进入大脑,或者对肠道菌群产生影响,引发或加重AD[12]

    以上综述指出,口腔菌群与AD之间存在紧密且重要的关系,口腔菌群紊乱引发AD有直接和间接两种作用途径。口腔细菌通过循环系统或神经侵入脑组织,产生Aβ沉淀或引发大脑神经炎症,直接损伤神经元。此外,口腔细菌也可以引发全身炎症,损伤脑血管间接引发AD。

    P. gingivalis、螺旋体和H. pylori与AD有密切联系,但目前多数研究为口腔疾病与AD的关系,具体细菌相关性研究较少,分子机制尚不明确,人体研究缺乏。此外,关于口腔菌群紊乱与AD发生病理变化的时序关系还未有充分证据证明。基于病理学基础的有效药物较少,有碍于AD治疗。目前只有少数基因被发现在口腔菌群紊乱与AD之间的作用,此方面研究缺乏。。

    在未来的研究中,应利用分子生物学技术,从细胞和分子层面揭示口腔细菌在AD发生和发展中的作用。确定菌群紊乱与AD发生的时序关系,从而探索有效的预防和治疗药物,抗菌药、口腔保健都有可能降低AD患病率或延缓病程。未来还需要探索多种基因对致病过程的不同影响,从基因多态性方面认识个体差异,或许能够为延缓或逆转AD作出贡献。

    *    *    *

    利益冲突 所有作者均声明不存在利益冲突

  • 图  1   口腔菌群对脑组织的直接损伤作用

    Figure  1.   Direct damage of oral microflora to brain tissue

    A: Some bacteria can directly produce Aβ precipitation accumulation in brain tissue; B: Microglia are continuously activated by bacteria and toxins entering brain tissue, releasing inflammatory factors and causing neuroinflammation; C: Bacteria and toxins activate the complement system; D: Inflammatory factors and complement fragments promote Aβ precipitation and Tau protein hyperphosphorylation; E: Aβ precipitation and hyperphosphorylation of Tau protein stimulate microglia to produce inflammatory factors that maintain or exacerbate neuroinflammation; F: Excessive Aβ precipitation and hyperphosphorylated Tau protein damage neurons and induce AD. OMV: Outer membrane vesicle; LPS: Lipopolysaccharide; TNF: Tumor necrosis factor; Aβ: Amyloid β-protein; IL-1: Interleukin-1; IL-6: Interleukin-6; IL-12: Interleukin-12; IL-23: Interleukin-23.

    图  2   细菌、毒素和炎症因子通过BBB途径

    Figure  2.   Bacteria, toxins and inflammatory factors pass through the BBB pathway

    A: Destruction of BBB barrier cells; B: Activating barrier cells to secret nitric oxide (NO), prostaglandin (PG) and other signaling molecules, and promoting brain cells to produce inflammatory factors, such as LPS-stimulated IL-6; C: Cell-specific transporters transporting inflammatory factors, such as TNF transporters. OMV: Outer membrane vesicle; LPS: Lipopolysaccharide; TNF: Tumor necrosis factor; IL-1: Interleukin-1; IL-6: Interleukin-6; BBB: Blood-brain barrier.

  • [1] 任汝静, 殷鹏, 王志会, 等. 中国阿尔茨海默病报告2021. 诊断学理论与实践, 2021, 20(4): 317-337[2022-02-15]. https://kns.cnki.net/kcms/detail/detail.aspx?FileName=ZDLS202104001&DbName=CJFQ2021. doi: 10.16150/j.1671-2870.2021.04.001.
    [2]

    SILVA M V F, LOURES C M G, ALVES L C V, et al. Alzheimer’s disease: Risk factors and potentially protective measures. J Biomed Sci,2019,26(1): 33. DOI: 10.1186/s12929-019-0524-y

    [3]

    WADE W G. The oral microbiome in health and disease. Pharmacol Res,2013,69(1): 137–143. DOI: 10.1016/j.phrs.2012.11.006

    [4]

    GAO L, XU T, HUANG G, et al. Oral microbiomes: More and more importance in oral cavity and whole body. Protein Cell,2018,9(5): 488–500. DOI: 10.1007/s13238-018-0548-1

    [5]

    WANG X, SUN G, FENG T, et al. Sodium oligomannate therapeutically remodels gut microbiota and suppresses gut bacterial amino acids-shaped neuroinflammation to inhibit Alzheimer’s disease progression. Cell Res,2019,29(10): 787–803. DOI: 10.1038/s41422-019-0216-x

    [6]

    LIU X X, JIAO B, LIAO X X, et al. Analysis of salivary microbiome in patients with Alzheimer’s disease. J Alzheimers Dis,2019,72(2): 633–640. DOI: 10.3233/JAD-190587

    [7]

    TAKEUCHI K, OHARA T, FURUTA M, et al. Tooth loss and risk of Dementia in the community: The hisayama study. J Am Geriatr Soc, 2017, 65(5): e95-e100[2021-09-23]. https://doi.org/10.1111/jgs.14791.

    [8] 聂然, 周延民. 慢性牙周炎与阿尔茨海默病相关性的研究进展. 口腔医学研究,2019,35(5): 419–422. DOI: 10.13701/j.cnki.kqyxyj.2019.05.002
    [9] 尹晶菊. 中重度牙周炎伴阿尔茨海默病患者龈下菌斑微生物群落分析. 遵义: 遵义医科大学, 2019.
    [10]

    EMERY D C, SHOEMARK D K, BATSTONE T E, et al. 16S rRNA next generation sequencing analysis shows bacteria in Alzheimer’s post-mortem brain. Front Aging Neurosci, 2017, 9: 195[2021-09-22]. https://doi.org/10.3389/fnagi.2017.00195.

    [11]

    RIVIERE G R, RIVIERE K H, SMITH K S, et al. Molecular and immunological evidence of oral Treponema in the human brain and their association with Alzheimer’s disease. Oral Microbiol Immunol,2002,17(2): 113–118. DOI: 10.1046/j.0902-0055.2001.00100.x

    [12]

    DOULBERIS M, KOTRONIS G, THOMANN R, et al. Review: Impact of Helicobacter pylori on Alzheimer’s disease: What do we know so far? Helicobacter, 2018, 23(1): 10.1111/hel. 12454[2021-09-24]. https://doi.org/10.1111/hel.12454.

    [13]

    POOLE S, SINGHRAO S K, KESAVALU L, et al. Determining the presence of periodontopathic virulence factors in short-term postmortem Alzheimer’s disease brain tissue. J Alzheimers Dis,2013,36(4): 665–677. DOI: 10.3233/JAD-121918

    [14]

    POOLE S, SINGHRAO S K, CHUKKAPALLI S, et al. Active invasion of Porphyromonas gingivalis and infection-induced complement activation in ApoE-/- mice brains. J Alzheimers Dis,2015,43(1): 67–80. DOI: 10.3233/JAD-140315

    [15]

    BOWMAN G L, DAYON L, KIRKLAND R, et al. Blood-brain barrier breakdown, neuroinflammation, and cognitive decline in older adults. Alzheimers Dement,2018,14(12): 1640–1650. DOI: 10.1016/j.jalz.2018.06.2857

    [16]

    GIL-MONTOYA J A, BARRIOS R, SANTANA S, et al. Association between periodontitis and amyloid β peptide in elderly people with and without cognitive impairment. J Periodontol,2017,88(10): 1051–1058. DOI: 10.1902/jop.2017.170071

    [17]

    HARDING A, GONDER U, ROBINSON S J, et al. Exploring the association between Alzheimer’s disease, oral health, microbial endocrinology and nutrition. Front Aging Neurosci, 2017, 9: 398[2021-09-24]. https://doi.org/10.3389/fnagi.2017.00398.

    [18]

    BANKS W A, FARR S A, MORLEY J E. Entry of blood-borne cytokines into the central nervous system: Effects on cognitive processes. Neuroimmunomodulation,2002,10(6): 319–327. DOI: 10.1159/000071472

    [19]

    SUNDAR S, BATTISTONI C, MCNULTY R, et al. An agent-based model to investigate microbial initiation of Alzheimer’s via the olfactory system. Theor Biol Med Model,2020,17(1): 5. DOI: 10.1186/s12976-020-00123-w

    [20]

    SUREDA A, DAGLIA M, ARGÜELLES CASTILLA S, et al. Oral microbiota and Alzheimer’s disease: Do all roads lead to Rome? Pharmacol Res, 2020, 151: 104582[2021-09-25]. https://doi.org/10.1016/j.phrs.2019.104582.

    [21]

    TANAKA M, TOLDI J, VÉCSEI L. Exploring the etiological links behind neurodegenerative diseases: Inflammatory cytokines and bioactive kynurenines. Int J Mol Sci,2020,21(7): 2431. DOI: 10.3390/ijms21072431

    [22] 张明爽, 巴特, 王文标. 口腔微生物种群与阿尔茨海默病相关发病机制的研究进展. 国际口腔医学杂志,2020,47(01): 102–108.
    [23]

    ZHANG J, YU C, ZHANG X, et al. Porphyromonas gingivalis lipopolysaccharide induces cognitive dysfunction, mediated by neuronal inflammation via activation of the TLR4 signaling pathway in C57BL/6 mice. J Neuroinflammation,2018,15(1): 37. DOI: 10.1186/s12974-017-1052-x

    [24]

    SMITH D R, PRICE J E, BURBY P E, et al. The production of curli amyloid fibers is deeply integrated into the biology of Escherichia coli. Biomolecules,2017,7(4): 75. DOI: 10.3390/biom7040075

    [25]

    LUKIW W J. Gastrointestinal (GI) tract microbiome-derived neurotoxins-potent neuro-inflammatory signals from the GI tract via the systemic circulation into the brain. Front Cell Infect Microbiol, 2020, 10: 22[2021-10-15]. https://doi.org/10.3389/fcimb.2020.00022.

    [26]

    DIOGUARDI M, CRINCOLI V, LAINO L, et al. The role of periodontitis and periodontal bacteria in the onset and progression of Alzheimer’s disease: A systematic review. J Clin Med,2020,9(2): 495. DOI: 10.3390/jcm9020495

    [27]

    MONTAGNE A, ZHAO Z, ZLOKOVIC B V. Alzheimer’s disease: A matter of blood-brain barrier dysfunction? J Exp Med,2017,214(11): 3151–3169. DOI: 10.1084/jem.20171406

    [28]

    UMEDA T, ONO K, SAKAI A, et al. Rifampicin is a candidate preventive medicine against amyloid-β and tau oligomers. Brain,2016,139(Pt 5): 1568–1586. DOI: 10.1093/brain/aww042

    [29]

    WANG Y, GUAN PP, YU X, et al. COX-2 metabolic products, the prostaglandin I2 and F2α, mediate the effects of TNF-α and Zn2+ in stimulating the phosphorylation of Tau. Oncotarget,2017,8(59): 99296–99311. DOI: 10.18632/oncotarget.21853

    [30]

    POLIAKOVA T, LEVIN O, ARABLINSKIY A, et al. Cerebral microbleeds in early Alzheimer’s disease. J Neurol,2016,263(10): 1961–1968. DOI: 10.1007/s00415-016-8220-2

    [31]

    IADECOLA C. Revisiting atherosclerosis and dementia. Nat Neurosci,2020,23(6): 691–692. DOI: 10.1038/s41593-020-0626-6

    [32]

    HUSSAIN A A, LEE Y, MARSHALL J. Understanding the complexity of the matrix metalloproteinase system and its relevance to age-related diseases: Age-related macular degeneration and Alzheimer’s disease. Prog Retin Eye Res, 2020, 74: 100775[2021-10-15]. https://doi.org/10.1016/j.preteyeres.2019.100775.

    [33] 李晶卉, 张巍. 口腔微生物种群与阿尔茨海默病关系的新进展. 阿尔茨海默病及相关病杂志,2020,3(3): 204–209.
    [34]

    OLSEN I, SINGHRAO S K. Interaction between genetic factors, Porphyromonas gingivalis and microglia to promote Alzheimer’s disease. J Oral Microbiol,2020,12(1): 1820834. DOI: 10.1080/20002297.2020.1820834

    [35]

    GIRI M, ZHANG M, LÜ Y. Genes associated with Alzheimer’s disease: An overview and current status. Clin Interv Aging,2016,11: 665–681. DOI: 10.2147/CIA.S105769

    [36]

    CARTER C J, FRANCE J, CREAN S, et al. The Porphyromonas gingivalis/host interactome shows enrichment in GWASdb genes related to Alzheimer’s disease, diabetes and cardiovascular diseases. Front Aging Neurosci, 2017, 9: 408[2021-10-20]. https://doi.org/10.3389/fnagi.2017.00408.

    [37]

    IDE M, HARRIS M, STEVENS A, et al. Periodontitis and cognitive decline in Alzheimer’s Disease. PLoS One, 2016, 11(3): e0151081[2022-02-15]. https://doi.org/10.1371/journal.pone.0151081.

    [38]

    NOBLE J M, BORRELL L N, PAPAPANOU P N, et al. Periodontitis is associated with cognitive impairment among older adults: Analysis of NHANES-Ⅲ. J Neurol Neurosurg Psychiatry,2009,80(11): 1206–1211. DOI: 10.1136/jnnp.2009.174029

    [39]

    ISHIDA N, ISHIHARA Y, ISHIDA K, et al. Periodontitis induced by bacterial infection exacerbates features of Alzheimer’s disease in transgenic mice. NPJ Aging Mech Dis, 2017, 3: 15[2022-02-17]. https://doi.org/10.1038/s41514-017-0015-x.

    [40]

    KAMER A R, CRAIG R G, PIRRAGLIA E, et al. TNF-alpha and antibodies to periodontal bacteria discriminate between Alzheimer’s disease patients and normal subjects. J Neuroimmunol,2009,216(1/2): 92–97. DOI: 10.1016/j.jneuroim.2009.08.013

    [41]

    CARTER C J. Genetic, transcriptome, proteomic, and epidemiological evidence for blood-brain barrier disruption and polymicrobial brain invasion as determinant factors in Alzheimer’s disease. J Alzheimers Dis Rep,2017,1(1): 125–157. DOI: 10.3233/ADR-170017

    [42]

    WU Z, NI J, LIU Y, et al. Cathepsin B plays a critical role in inducing Alzheimer’s disease-like phenotypes following chronic systemic exposure to lipopolysaccharide from Porphyromonas gingivalis in mice. Brain Behav Immun, 2017, 65: 350−361[2022-02-18]. https://doi.org/10.1016/j.bbi.2017.06.002.

    [43]

    CHITRANSHI N, KUMAR A, SHERIFF S, et al. Identification of novel cathepsin B inhibitors with implications in Alzheimer’s disease: Computational refining and biochemical evaluation. Cells,2021,10(8): 1946. DOI: 10.3390/cells10081946

    [44]

    OLSEN I, LAMBRIS J D, HAJISHENGALLIS G. Porphyromonas gingivalis disturbs host-commensal homeostasis by changing complement function. J Oral Microbiol, 2017, 9(1): 1340085[2021-10-25]. https://doi.org/10.1080/20002297.2017.1340085.

    [45]

    DOMINY S S, LYNCH C, ERMINI F, et al. Porphyromonas gingivalis in Alzheimer’s disease brains: Evidence for disease causation and treatment with small-molecule inhibitors. Sci Adv, 2019, 5(1): eaau3333[2021-10-25]. https://doi.org/10.1126/sciadv.aau3333.

    [46]

    MONTAGNE A, PA J, ZLOKOVIC B V. Vascular plasticity and cognition during normal aging and dementia. JAMA Neurol,2015,72(5): 495–496. DOI: 10.1001/jamaneurol.2014.4636

    [47] 尹晶菊, 葛颂. 口腔微生物与阿尔茨海默病相关性研究进展. 山东医药,2019,59(2): 107–110. DOI: CNKI:SUN:SDYY.0.2019-02-034
    [48]

    SAKAI K, FUKUDA T, IWADATE K, et al. A fatal fall associated with undiagnosed parenchymatous neurosyphilis. Am J Forensic Med Pathol,2014,35(1): 4–7. DOI: 10.1097/PAF.0000000000000068

    [49]

    MIKLOSSY J. Historic evidence to support a causal relationship between spirochetal infections and Alzheimer’s disease. Front Aging Neurosci, 2015, 7: 46[2021-10-25]. https://doi.org/10.3389/fnagi.2015.00046.

    [50]

    WANG X L, ZENG J, FENG J, et al. Helicobacter pylori filtrate impairs spatial learning and memory in rats and increases β-amyloid by enhancing expression of presenilin-2. Front Aging Neurosci, 2014, 6: 66[2021-10-25]. https://doi.org/10.3389/fnagi.2014.00066.

  • 期刊类型引用(5)

    1. 徐天宏,叶珊,陈红莲. 晚期阿尔茨海默病患者BRUSHED-T床旁口腔评估联合冲洗+改良式体位引流的疗效观察. 浙江医学. 2025(02): 197-200 . 百度学术
    2. 徐曼如,朱月,陈金鑫,李捷,范依然,秦静波,伍文彬. 从“毒损脑络”理论探讨牙龈卟啉单胞菌与阿尔茨海默病的相关性. 中药药理与临床. 2024(02): 125-128 . 百度学术
    3. 韩书琴,蔡亦凡,王娇龙,廖岚. 口腔健康不良与阿尔兹海默症相关性研究现状. 井冈山大学学报(自然科学版). 2024(02): 44-54 . 百度学术
    4. 崔兵兵,杨春林,杨颖. 基于“口腔-肠道微生物失调”-阿尔茨海默病的中药干预研究进展. 湖南中医药大学学报. 2024(12): 2337-2344 . 百度学术
    5. 陈玉英,郭玲,陈纯. 阿尔茨海默病伴中重度牙周炎患者龈下菌群情况及与认知障碍程度的关系探究. 中外医学研究. 2022(34): 83-86 . 百度学术

    其他类型引用(2)

图(2)
计量
  • 文章访问数:  2098
  • HTML全文浏览量:  630
  • PDF下载量:  488
  • 被引次数: 7
出版历程
  • 收稿日期:  2021-10-16
  • 修回日期:  2022-02-18
  • 录用日期:  2022-02-20
  • 网络出版日期:  2022-03-21
  • 发布日期:  2022-03-19

目录

/

返回文章
返回