Abstract:
Cholesterol, an important lipid molecule of organisms, is involved in the formation of cell membrane structure, bile acid metabolism and steroid hormone synthesis, playing an important role in the regulation of cell structure and functions. In recent years, a large number of studies have shown that cholesterol metabolism is reprogrammed during tumor formation and development. In addition to directly affecting the biological behavior of tumor cells, cholesterol metabolic reprogramming also regulates the antitumor activity of immune cells in the tumor microenvironment. We reviewed herein the cholesterol metabolism reprogramming of and interactions among immune cells including myeloid-derived suppressor cells (MDSCs), tumor-associated macrophages (TAMs), dendritic cells (DCs), and T cells in the tumor microenvironment. However, the relationship between cholesterol metabolism and tumor immunity in tumor microenvironment is complex and diversified. The differences and similarities of cholesterol metabolism reprogramming in tumor microenvironment in regulating immune cell activity and the specific regulatory mechanism are still unresolved issues. Targeted intervention of the cholesterol metabolism pathway of immune cells is expected to become a new strategy of cholesterol metabolism in tumor immunotherapy.