欢迎来到《四川大学学报(医学版)》

教育环境是学生近视发生发展的最强因素

吕帆

吕帆. 教育环境是学生近视发生发展的最强因素[J]. 四川大学学报(医学版), 2021, 52(6): 895-900. doi: 10.12182/20211160301
引用本文: 吕帆. 教育环境是学生近视发生发展的最强因素[J]. 四川大学学报(医学版), 2021, 52(6): 895-900. doi: 10.12182/20211160301
LYU Fan. Educational Environment: The Most Powerful Factor for the Onset and Development of Myopia among Students[J]. JOURNAL OF SICHUAN UNIVERSITY (MEDICAL SCIENCE EDITION), 2021, 52(6): 895-900. doi: 10.12182/20211160301
Citation: LYU Fan. Educational Environment: The Most Powerful Factor for the Onset and Development of Myopia among Students[J]. JOURNAL OF SICHUAN UNIVERSITY (MEDICAL SCIENCE EDITION), 2021, 52(6): 895-900. doi: 10.12182/20211160301

栏目: 专家笔谈

教育环境是学生近视发生发展的最强因素

doi: 10.12182/20211160301

Educational Environment: The Most Powerful Factor for the Onset and Development of Myopia among Students

  • 摘要: 综合近视流行病学、基础实验和临床研究文献,有关近视问题呈现出几大特征:中小学生是高发人群并日趋严重;病因学探索中环境作用非常强势;临床矫正方法成熟但减缓近视进展存在诸多不确定性。学生近视已经成为国家近视防控的重中之重,如何从教育环境着手,探索学生近视发生和发展的具体防控措施,需要明确社会高度发展而致的教育需求增加,及其科技进步所营造的教育环境快速变化,对学生近视发生发展的多重影响效应。本文将从中小学生人群在发育和成长阶段、眼睛和视觉的特征入手,以及各个阶段所承受的学业负担,回溯近九十年来的历史文献和新冠肺炎疫情前后的队列研究数据,明确教育环境是学生近视发生发展的第一因素,充分认定近视防控中“教医协同”的科学性,以及如何在学生近视防控发挥具体的作用。
  • 图  1  1960年至2020年中国学生人群近视患病率

    Figure  1.  The prevalence of myopia among Chinese students from 1960 s to 2020 s

    表  1  正视化过程中的“标签”:与年龄匹配的远视度数

    Table  1.   The tag of emmetropization: age appropriate hyperopia

    Age/yr. Hyperopia reserves (SER)
    6 +0.75 D
    7–8 +0.50 D
    9–10 +0.25 D
    11 Emmetropia
     SER: Spherical equivalent refractive errors.
    下载: 导出CSV
  • [1] NEGREL A D, MAUL E, POKHAREL G P, et al. Refractive error study in children: sampling and measurement methods for a multi-country survey. Am J Ophthalmol,2000,129(4): 421–426. doi: 10.1016/s0002-9394(99)00455-9
    [2] 姜珺. 近视管理白皮书(2019). 中华眼视光学与视觉科学杂志,2019,21(3): 161–165. doi: 10.3760/cma.j.issn.1674-845X.2019.03.001
    [3] 杨晓, 陈燕先, 曾骏文, 等. 屈光门诊进行儿童近视眼控制应从证据到临床实践. 中华眼科杂志,2019,55(2): 89–92. doi: 10.3760/cma.j.issn.0412-4081.2019.02.003
    [4] GOSS D A, WINKLER R L. Progression of myopia in youth: age of cessation. Am J Optom Physiol Opt,1983,60(8): 651–658. doi: 10.1097/00006324-198308000-00002
    [5] MCBRIEN N A, MILLODOT M. The effect of refractive error on the accommodative response gradient. Ophthal Physl Opt,1986,6(2): 145–149. doi: 10.1111/j.1475-1313.1986.tb01135.x
    [6] BROWN N P, KORETZ J F, BRON A J. The development and maintenance of emmetropia. Eye (Lond),1999,13(Pt1): 83–92. doi: 10.1038/eye.1999.16
    [7] WALLMAN J, WINAWER J. Homeostasis of eye growth and the question of myopia. Neuron,2004,43(4): 447–468. doi: 10.1016/j.neuron.2004.08.008
    [8] ZADNIK K, SINNOTT L T, COTTER S A, et al. Prediction of juvenile-onset myopia. JAMA Ophthalmol,2015,133(6): 683–689. doi: 10.1001/jamaophthalmol.2015.0471
    [9] TEDJA M S, WOJCIECHOWSKI R, HYSI P G, et al. Genome-wide association meta-analysis highlights light-induced signaling as a driver for refractive error. Nat Genet,2018,50(6): 834–848. doi: 10.1038/s41588-018-0127-7
    [10] 吕帆, 陈屹雅. 近视眼流行病学研究的迭代与意义. 中华眼科杂志,2021,57(4): 245–250. doi: 10.3760/cma.j.cn112142-20210108-00011
    [11] 徐寶萃. 学校近视眼問題及学生近視患病率的調查分析. 哈尔滨医科大学学报,1965(1): 96–104.
    [12] HE M, ZENG J, LIU Y, et al. Refractive error and visual impairment in urban children in southern China. Invest Ophthalmol Vis Sci,2004,45(3): 793–799. doi: 10.1167/iovs.03-1051
    [13] ZHAO J, PAN X, SUI R, et al. Refractive error study in children: results from Shunyi district, China. Am J Ophthalmol,2000,129(4): 427–435. doi: 10.1016/s0002-9394(99)00452-3
    [14] WU J F, BI H S, WANG S M, et al. Refractive error, visual acuity and causes of vision loss in children in Shandong, China. the Shandong children eye study. PLoS One, 2013, 8(12): e82763[2021-07-01]. https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0082763.
    [15] YOU Q S, WU L J, DUAN J L, et al. Prevalence of myopia in school children in greater Beijing: the Beijing childhood eye study. Acta Ophthalmol, 2014, 92(5): e398-406[2021-07-01]. https://onlinelibrary.wiley.com/doi/10.1111/aos.12299.
    [16] QIAN D J, ZHONG H, LI J, et al. Myopia among school students in rural China (Yunnan). Ophthalmic Physiol Opt,2016,36(4): 381–387. doi: 10.1111/opo.12287
    [17] CHANG P , ZHANG B , LIN L , et al. Comparison of the myopic progression before, during and after COVID-19 lockdown. Ophthalmology,2021,128(11): 1655–1657. doi: 10.1016/j.ophtha.2021.03.029
    [18] 教育部. 第一场: 介绍2020年秋季学期学校疫情防控和教育教学工作有关情况. (2020-08-27) [2021-09-14]. http://www.moe.gov.cn/fbh/live/2020/52320/.
    [19] XU L, MA Y, YUAN J, et al. COVID-19 quarantine reveals that behavioral changes have an effect on myopia progression. Ophthalmology,2021,128(11): 1652–1654. doi: 10.1016/j.ophtha.2021.04.001
    [20] WU H, CHEN W, ZHAO F, et al. Scleral hypoxia is a target for myopia control. Proc Natl Acad Sci U S A,2018,115(30): E7091–E7100. doi: 10.1073/pnas.1721443115
    [21] GUGGENHEIM J A, NORTHSTONE K, MCMAHON G, et al. Time outdoors and physical activity as predictors of incident myopia in childhood: A prospective cohort study. Invest Ophth Vis Sci,2012,53(6): 2856–2865. doi: 10.1167/iovs.11-9091
    [22] HE M, XIANG F, ZENG Y, et al. Effect of time spent outdoors at school on the development of myopia among children in China: a randomized clinical trial. JAMA,2015,314(11): 1142–1148. doi: 10.1001/jama.2015.10803
    [23] WU P C, CHEN C T, LIN K K, et al. Myopia prevention and outdoor light intensity in a school-based cluster randomized trial. Ophthalmology,2018,125(8): 1239–1250. doi: 10.1016/j.ophtha.2017.12.011
    [24] PARSSINEN O, HEMMINKI E, KLEMETTI A. Effect of spectacle use and accommodation on myopic progression: final results of a three-year randomised clinical trial among schoolchildren. Br J Ophthalmol,1989,73(7): 547–551. doi: 10.1136/bjo.73.7.547
    [25] IP J M, SAW S M, ROSE K A, et al. Role of near work in myopia: findings in a sample of Australian school children. Invest Ophthalmol Vis Sci,2008,49(7): 2903–2910. doi: 10.1167/iovs.07-0804
    [26] BAO J, DROBE B, WANG Y, et al. Influence of near tasks on posture in myopic Chinese schoolchildren. Optom Vis Sci,2015,92(8): 908–915. doi: 10.1097/OPX.0000000000000658
    [27] 赵宏伟, 黄一飞. 光照与近视发生发展的关系. 国际眼科杂志,2016(1): 74–76. doi: 10.3980/j.issn.1672-5123.2016.1.19
    [28] HUA W J, JIN J X, WU X Y, et al. Elevated light levels in schools have a protective effect on myopia. Ophthalmic Physiol Opt,2015,35(3): 252–262. doi: 10.1111/opo.12207
    [29] CHO P, CHEUNG S W, EDWARDS M. The longitudinal orthokeratology research in children (LORIC) in Hong Kong: a pilot study on refractive changes and myopic control. Curr Eye Res,2005,30(1): 71–80. doi: 10.1080/02713680590907256
    [30] VANDERVEEN D K, KRAKER R T, PINELES S L, et al. Use of orthokeratology for the prevention of myopic progression in children: a report by the American academy of ophthalmology. Ophthalmology,2019,126(4): 623–636. doi: 10.1016/j.ophtha.2018.11.026
    [31] YU L H, JIN W Q, MAO X J, et al. Effect of orthokeratology on axial length elongation in moderate myopic and fellow high myopic eyes of children. Clin Exp Optom,2021,104(1): 22–27. doi: 10.1111/cxo.13067
    [32] BERNTSEN D A, KRAMER C E. Peripheral defocus with spherical and multifocal soft contact lenses. Optom Vis Sci,2013,90(11): 1215–1224. doi: 10.1097/OPX.0000000000000066
    [33] LI S M, KANG M T, WU S S, et al. Studies using concentric ring bifocal and peripheral add multifocal contact lenses to slow myopia progression in school-aged children: a meta-analysis. Ophthalmic Physiol Opt,2017,37(1): 51–59. doi: 10.1111/opo.12332
    [34] CHAMBERLAIN P, PEIXOTO-DE-MATOS S C, LOGAN N S, et al. A 3-year randomized clinical trial of MiSight lenses for myopia control. Optom Vis Sci,2019,96(8): 556–567. doi: 10.1097/OPX.0000000000001410
    [35] LAM C S Y, TANG W C, TSE D Y, et al. Defocus Incorporated Multiple Segments (DIMS) spectacle lenses slow myopia progression: a 2-year randomised clinical trial. Br J Ophthalmol,2020,104(3): 363–368. doi: 10.1136/bjophthalmol-2018-313739
    [36] BAO J, YANG A, HUANG Y, et al. One-year myopia control efficacy of spectacle lenses with aspherical lenslets. Brit J Ophthalmol, 2021. doi: 10.1136/bjophthalmol-2020-318367.
    [37] HUANG J, WEN D, WANG Q, et al. Efficacy comparison of 16 interventions for myopia control in children: a network meta-analysis. Ophthalmology,2016,123(4): 697–708. doi: 10.1016/j.ophtha.2015.11.010
    [38] CHIA A, LU Q S, TAN D. Five-year clinical trial on atropine for the treatment of myopia 2: myopia control with atropine 0.01% eyedrops. Ophthalmology,2016,123(2): 391–399. doi: 10.1016/j.ophtha.2015.07.004
    [39] CHIA A, CHUA W H, CHEUNG Y B, et al. Atropine for the treatment of childhood myopia: safety and efficacy of 0.5%, 0.1%, and 0.01% doses (atropine for the treatment of myopia 2). Ophthalmology,2012,119(2): 347–354. doi: 10.1016/j.ophtha.2011.07.031
    [40] CHUA W H, BALAKRISHNAN V, CHAN Y H, et al. Atropine for the treatment of childhood myopia. Ophthalmology,2006,113(12): 2285–2291. doi: 10.1016/j.ophtha.2006.05.062
    [41] YAM J C, LI F F, ZHANG X, et al. Two-year clinical trial of the low-concentration atropine for myopia progression (LAMP) study: phase 2 report. Ophthalmology,2020,127(7): 910–919. doi: 10.1016/j.ophtha.2019.12.011
    [42] CHIA A, CHUA W H, WEN L, et al. Atropine for the treatment of childhood myopia: changes after stopping atropine 0.01%, 0.1% and 0.5%. Am J Ophthalmol,2014,157(2): 451–457.e1. doi: 10.1016/j.ajo.2013.09.020
  • 加载中
图(1) / 表(1)
计量
  • 文章访问数:  112
  • HTML全文浏览量:  28
  • PDF下载量:  465
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-01
  • 修回日期:  2021-09-15
  • 刊出日期:  2021-11-20

目录

    /

    返回文章
    返回