欢迎来到《四川大学学报(医学版)》

软骨细胞葡萄糖代谢研究的新进展

魏洁雅 张德茂 谢静 周学东

魏洁雅, 张德茂, 谢静, 等. 软骨细胞葡萄糖代谢研究的新进展[J]. 四川大学学报(医学版), 2021, 52(6): 923-928. doi: 10.12182/20211160206
引用本文: 魏洁雅, 张德茂, 谢静, 等. 软骨细胞葡萄糖代谢研究的新进展[J]. 四川大学学报(医学版), 2021, 52(6): 923-928. doi: 10.12182/20211160206
WEI Jie-ya, ZHANG De-mao, XIE Jing, et al. Research Progress in Glucose Metabolism of Chondrocytes[J]. JOURNAL OF SICHUAN UNIVERSITY (MEDICAL SCIENCE EDITION), 2021, 52(6): 923-928. doi: 10.12182/20211160206
Citation: WEI Jie-ya, ZHANG De-mao, XIE Jing, et al. Research Progress in Glucose Metabolism of Chondrocytes[J]. JOURNAL OF SICHUAN UNIVERSITY (MEDICAL SCIENCE EDITION), 2021, 52(6): 923-928. doi: 10.12182/20211160206

软骨细胞葡萄糖代谢研究的新进展

doi: 10.12182/20211160206
基金项目: 国家自然科学基金(No. 81670978、No. 81870754)资助
详细信息
    通讯作者:

    E-mail:zhouxd@scu.edu.cn

Research Progress in Glucose Metabolism of Chondrocytes

More Information
  • 摘要: 关节软骨是一种缺乏血管分布的组织,软骨细胞代谢所需的葡萄糖和氧气供应受限。本文对软骨细胞葡萄糖代谢特点及骨关节炎过程中软骨细胞葡萄糖代谢变化的研究新进展进行综述。目前研究发现,软骨细胞从关节滑液和软骨下骨中获取葡萄糖,经特定的转运载体家族摄入葡萄糖,并主要通过糖酵解和线粒体呼吸途径代谢葡萄糖以产生腺嘌呤核苷三磷酸(adenosine triphosphate, ATP)。线粒体呼吸对软骨细胞合成ATP的贡献较小。软骨细胞表现出对糖酵解产能的显著依赖性,具有Warburg效应和Crabtree效应。在骨关节炎过程中,软骨细胞葡萄糖代谢紊乱表现为线粒体呼吸进一步受到抑制,糖酵解过度活跃或出现障碍,ATP总产量减少。然而,来自滑液和软骨下骨的葡萄糖供应对软骨细胞的重要性尚未明确,对骨关节炎发生发展过程中软骨细胞糖酵解途径变化的认识仍存在争议。因此,未来的研究需加强对生理病理条件下软骨细胞葡萄糖代谢特点的探索以期为诊断和治疗骨关节炎提供新方法。
  • [1] MULUKUTLA B C, YONGKY A, LE T, et al. Regulation of glucose metabolism—A perspective from cell bioprocessing. Trends Biotechnol,2016,34(8): 638–651. doi: 10.1016/j.tibtech.2016.04.012
    [2] MARCONI A, HANCOCK-RONEMUS A, GILLIS J A. Adult chondrogenesis and spontaneous cartilage repair in the skate, Leucoraja erinacea. Elife, 2020, 9: e53414 [2021-09-25]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7217701/. doi: 10.7554/eLife.53414.
    [3] 邵婉珍, 张风娥, 王森, 等. 糖代谢紊乱对大骨节病软骨细胞功能的影响. 四川大学学报(医学版),2018,49(2): 65–69.
    [4] JUDGE A, DODD M S. Metabolism. Essays Biochem,2020,64(4): 607–647. doi: 10.1042/EBC20190041
    [5] VOLCHENKOV R, DUNG CAO M, ELGSTØEN K B, et al. Metabolic profiling of synovial tissue shows altered glucose and choline metabolism in rheumatoid arthritis samples. Scand J Rheumatol,2017,46(2): 160–161. doi: 10.3109/03009742.2016.1164242
    [6] SHARMA K, IVY M, BLOCK D R, et al. Comparative analysis of 23 synovial fluid biomarkers for hip and knee periprosthetic joint infection detection. J Orthop Res,2020,38(12): 2664–2674. doi: 10.1002/jor.24766
    [7] CULLITON K N, SPEIRS A D. Sliding contact accelerates solute transport into the cartilage surface compared to axial loading. Osteoarthritis Cartilage,2021,29(9): 1362–1369. doi: 10.1016/j.joca.2021.05.060
    [8] GRAHAM B T, MOORE A C, BURRIS D L, et al. Sliding enhances fluid and solute transport into buried articular cartilage contacts. Osteoarthritis Cartilage,2017,25(12): 2100–2107. doi: 10.1016/j.joca.2017.08.014
    [9] MALININ T, OUELLETTE E A. Articular cartilage nutrition is mediated by subchondral bone: A long-term autograft study in baboons. Osteoarthritis Cartilage,2000,8(6): 483–491. doi: 10.1053/joca.1999.0324
    [10] YANG Y, WEI J, LI J, et al. Lipid metabolism in cartilage and its diseases: A concise review of the research progress. Acta Biochim Biophys Sin (Shanghai),2021,53(5): 517–527. doi: 10.1093/abbs/gmab021
    [11] ZHANG T, XIE J, SUN K, et al. Physiological oxygen tension modulates soluble growth factor profile after crosstalk between chondrocytes and osteoblasts. Cell Prolif,2016,49(1): 122–133. doi: 10.1111/cpr.12239
    [12] WANG Y, WEI L, ZENG L, et al. Nutrition and degeneration of articular cartilage. Knee Surg Sports Traumatol Arthrosc,2013,21(8): 1751–1762. doi: 10.1007/s00167-012-1977-7
    [13] ZHOU S, CUI Z, URBAN J P. Factors influencing the oxygen concentration gradient from the synovial surface of articular cartilage to the cartilage-bone interface: A modeling study. Arthritis Rheum,2004,50(12): 3915–3924. doi: 10.1002/art.20675
    [14] LEVICK J R. Microvascular architecture and exchange in synovial joints. Microcirculation,1995,2(3): 217–233. doi: 10.3109/10739689509146768
    [15] HEYWOOD H K, KNIGHT M M, LEE D A. Both superficial and deep zone articular chondrocyte subpopulations exhibit the Crabtree effect but have different basal oxygen consumption rates. J Cell Physiol,2010,223(3): 630–639. doi: 10.1002/jcp.22061
    [16] HOLLANDER J M, ZENG L. The emerging role of glucose metabolism in cartilage development. Curr Osteoporos Rep,2019,17(2): 59–69. doi: 10.1007/s11914-019-00506-0
    [17] ZHU S B, XU Y Q, GAO H, et al. NF-κB inhibitor QNZ protects human chondrocyte degeneration by promoting glucose uptake through Glut4 activation. Eur Rev Med Pharmacol Sci,2020,24(9): 4642–4651. doi: 10.26355/eurrev_202005_21150
    [18] WANG C, YING J, NIU X, et al. Deletion of Glut1 in early postnatal cartilage reprograms chondrocytes toward enhanced glutamine oxidation. Bone Res, 2021, 9(1): 38 [2021-09-25]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8382841/. doi: 10.1038/s41413-021-00153-1.
    [19] LEE S Y, ABEL E D, LONG F. Glucose metabolism induced by BMP signaling is essential for murine skeletal development. Nat Commun, 2018, 9(1): 4831 [2021-09-25]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6240091/. doi: 10.1038/s41467-018-07316-5.
    [20] PHILLIPS T, FERRAZ I, BELL S, et al. Differential regulation of the GLUT1 and GLUT3 glucose transporters by growth factors and pro-inflammatory cytokines in equine articular chondrocytes. Vet J,2005,169(2): 216–222. doi: 10.1016/j.tvjl.2004.01.026
    [21] SHIKHMAN A R, BRINSON D C, VALBRACHT J, et al. Cytokine regulation of facilitated glucose transport in human articular chondrocytes. J Immunol,2001,167(12): 7001–7008. doi: 10.4049/jimmunol.167.12.7001
    [22] SHIKHMAN A R, BRINSON D C, LOTZ M K. Distinct pathways regulate facilitated glucose transport in human articular chondrocytes during anabolic and catabolic responses. Am J Physiol Endocrinol Metab,2004,286(6): E980–985. doi: 10.1152/ajpendo.00243.2003
    [23] WINDHABER R A, WILKINS R J, MEREDITH D. Functional characterisation of glucose transport in bovine articular chondrocytes. Pflugers Arch,2003,446(5): 572–577. doi: 10.1007/s00424-003-1080-5
    [24] STEGEN S, LAPERRE K, EELEN G, et al. HIF-1α metabolically controls collagen synthesis and modification in chondrocytes. Nature,2019,565(7740): 511–515. doi: 10.1038/s41586-019-0874-3
    [25] TERABE K, OHASHI Y, TSUCHIYA S, et al. Chondroprotective effects of 4-methylumbelliferone and hyaluronan synthase-2 overexpression involve changes in chondrocyte energy metabolism. J Biol Chem,2019,294(47): 17799–17817. doi: 10.1074/jbc.RA119.009556
    [26] LEE R B, URBAN J P. Functional replacement of oxygen by other oxidants in articular cartilage. Arthritis Rheum,2002,46(12): 3190–3200. doi: 10.1002/art.10686
    [27] 张宇标, 李皓桓. 软骨细胞能量代谢的瓦氏效应和Crabtree效应. 医学综述,2019,25(7): 1277–1281. doi: 10.3969/j.issn.1006-2084.2019.07.006
    [28] LUENGO A, LI Z, GUI D Y, et al. Increased demand for NAD(+) relative to ATP drives aerobic glycolysis. Mol Cell,2021,81(4): 691–707.e696. doi: 10.1016/j.molcel.2020.12.012
    [29] CHANG J C, GO S, GILGLIONI E H, et al. Soluble adenylyl cyclase regulates the cytosolic NADH/NAD(+) redox state and the bioenergetic switch between glycolysis and oxidative phosphorylation. Biochim Biophys Acta Bioenerg, 2021, 1862(4): 148367[2021-09-25].https://www.sciencedirect.com/science/article/pii/S0005272820302176?via%3Dihub. doi: 10.1016/j.bbabio.2020.148367.
    [30] HEYWOOD H K, LEE D A. Monolayer expansion induces an oxidative metabolism and ROS in chondrocytes. Biochem Biophys Res Commun,2008,373(2): 224–229. doi: 10.1016/j.bbrc.2008.06.011
    [31] KO K W, CHOI B, PARK S, et al. Down-regulation of transglutaminase 2 stimulates redifferentiation of dedifferentiated chondrocytes through enhancing glucose metabolism. Int J Mol Sci, 2017, 18(11): 2359[2021-09-25]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5713328/. doi: 10.3390/ijms18112359.
    [32] ASPDEN R M, SAUNDERS F R. Osteoarthritis as an organ disease: From the cradle to the grave. Eur Cell Mater,2019,37: 74–87. doi: 10.22203/eCM.v037a06
    [33] ANDERSON J R, CHOKESUWATTANASKUL S, PHELAN M M, et al. 1H NMR metabolomics identifies underlying inflammatory pathology in osteoarthritis and rheumatoid arthritis synovial joints. J Proteome Res,2018,17(11): 3780–3790. doi: 10.1021/acs.jproteome.8b00455
    [34] OHASHI Y, TAKAHASHI N, TERABE K, et al. Metabolic reprogramming in chondrocytes to promote mitochondrial respiration reduces downstream features of osteoarthritis. Sci Rep, 2021, 11(1): 15131[2021-09-25]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8302637/. doi: 10.1038/s41598-021-94611-9.
    [35] KONG P, CHEN R, ZOU F Q, et al. HIF-1α repairs degenerative chondrocyte glycolytic metabolism by the transcriptional regulation of Runx2. Eur Rev Med Pharmacol Sci,2021,25(3): 1206–1214. doi: 10.26355/eurrev_202102_24823
    [36] ROTTER SOPASAKIS V, WICKELGREN R, SUKONINA V, et al. Elevated glucose levels preserve glucose uptake, hyaluronan production, and low glutamate release following interleukin-1β stimulation of differentiated chondrocytes. Cartilage,2019,10(4): 491–503. doi: 10.1177/1947603518770256
    [37] WU T J, LIN C Y, TSAI C H, et al. Glucose suppresses IL-1β-induced MMP-1 expression through the FAK, MEK, ERK, and AP-1 signaling pathways. Environ Toxicol,2018,33(10): 1061–1068. doi: 10.1002/tox.22618
    [38] WU T J, FONG Y C, LIN C Y, et al. Glucose enhances aggrecan expression in chondrocytes via the PKCα/p38-miR141-3p signaling pathway. J Cell Physiol,2018,233(9): 6878–6887. doi: 10.1002/jcp.26451
    [39] HOSSEINZADEH A, BAHRAMPOUR JUYBARI K, KAMARUL T, et al. Protective effects of atorvastatin on high glucose-induced oxidative stress and mitochondrial apoptotic signaling pathways in cultured chondrocytes. J Physiol Biochem,2019,75(2): 153–162. doi: 10.1007/s13105-019-00666-8
    [40] HUA L, WANG F Q, DU H W, et al. Upregulation of caspase-3 by high glucose in chondrocyte involves the cytoskeleton aggregation. Eur Rev Med Pharmacol Sci,2020,24(11): 5925–5932. doi: 10.26355/eurrev_202006_21485
    [41] BLANCO F J, REGO I, RUIZ-ROMERO C. The role of mitochondria in osteoarthritis. Nat Rev Rheumatol,2011,7(3): 161–169. doi: 10.1038/nrrheum.2010.213
    [42] CHEN L Y, WANG Y, TERKELTAUB R, et al. Activation of AMPK-SIRT3 signaling is chondroprotective by preserving mitochondrial DNA integrity and function. Osteoarthritis Cartilage,2018,26(11): 1539–1550. doi: 10.1016/j.joca.2018.07.004
    [43] ALVAREZ-GARCIA O, MATSUZAKI T, OLMER M, et al. Regulated in development and DNA damage response 1 deficiency impairs autophagy and mitochondrial biogenesis in articular cartilage and increases the severity of experimental osteoarthritis. Arthritis Rheumatol,2017,69(7): 1418–1428. doi: 10.1002/art.40104
    [44] JUNE R K, LIU-BRYAN R, LONG F, et al. Emerging role of metabolic signaling in synovial joint remodeling and osteoarthritis. J Orthop Res,2016,34(12): 2048–2058. doi: 10.1002/jor.23420
    [45] JUTILA A A, ZIGNEGO D L, HWANG B K, et al. Candidate mediators of chondrocyte mechanotransduction via targeted and untargeted metabolomic measurements. Arch Biochem Biophys,2014,545: 116–123. doi: 10.1016/j.abb.2014.01.011
    [46] TCHETINA E V, MARKOVA G A, POOLE A R, et al. Deferoxamine suppresses collagen cleavage and protease, cytokine, and COL10A1 expression and upregulates AMPK and Krebs cycle genes in human osteoarthritic cartilage. Int J Rheumatol,2016,2016: 6432867[2021-09-25]. https://doi.org/10.1155/2016/6432867.
    [47] PFANDER D, CRAMER T, SWOBODA B. Hypoxia and HIF-1alpha in osteoarthritis. Int Orthop,2005,29(1): 6–9. doi: 10.1007/s00264-004-0618-2
    [48] YANG X, CHEN W, ZHAO X, et al. Pyruvate kinase M2 modulates the glycolysis of chondrocyte and extracellular matrix in osteoarthritis. DNA Cell Biol,2018,37(3): 271–277. doi: 10.1089/dna.2017.4048
    [49] HUANG L W, HUANG T C, HU Y C, et al. Zinc protects chondrocytes from monosodium iodoacetate-induced damage by enhancing ATP and mitophagy. Biochem Biophys Res Commun,2020,521(1): 50–56. doi: 10.1016/j.bbrc.2019.10.066
    [50] QU J, LU D, GUO H, et al. PFKFB3 modulates glycolytic metabolism and alleviates endoplasmic reticulum stress in human osteoarthritis cartilage. Clin Exp Pharmacol Physiol,2016,43(3): 312–318. doi: 10.1111/1440-1681.12537
  • 加载中
计量
  • 文章访问数:  94
  • HTML全文浏览量:  21
  • PDF下载量:  18
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-29
  • 修回日期:  2021-10-08
  • 刊出日期:  2021-11-20

目录

    /

    返回文章
    返回