欢迎来到《四川大学学报(医学版)》

近视与光照的关系

朱秋蓉 刘陇黔

朱秋蓉, 刘陇黔. 近视与光照的关系[J]. 四川大学学报(医学版), 2021, 52(6): 901-906. doi: 10.12182/20211160205
引用本文: 朱秋蓉, 刘陇黔. 近视与光照的关系[J]. 四川大学学报(医学版), 2021, 52(6): 901-906. doi: 10.12182/20211160205
ZHU Qiu-rong, LIU Long-qian. Relationship between Myopia and Light Exposure[J]. JOURNAL OF SICHUAN UNIVERSITY (MEDICAL SCIENCE EDITION), 2021, 52(6): 901-906. doi: 10.12182/20211160205
Citation: ZHU Qiu-rong, LIU Long-qian. Relationship between Myopia and Light Exposure[J]. JOURNAL OF SICHUAN UNIVERSITY (MEDICAL SCIENCE EDITION), 2021, 52(6): 901-906. doi: 10.12182/20211160205

栏目: 文献综述

近视与光照的关系

doi: 10.12182/20211160205
详细信息
    通讯作者:

    E-mail:b.q15651@hotmail.com

Relationship between Myopia and Light Exposure

More Information
  • 摘要: 近视的发病率逐年上升且有低龄化趋势,减少近视发生、控制近视度数增长一直是近视防控领域的研究热点。有随机临床对照试验发现户外活动可以有效降低发病率,延缓近视度数加深;基础实验也证实光照与近视的发生发展存在一定的关系。本文对光照与近视的研究进展、局限性和未来发展方向进行了综述。从光照性质来看,增加光照强度能够减缓近视进展,减少实验性诱导近视的产生,但具体的作用机制尚不清楚。光照的明/暗周期节律性变化会造成褪黑素和多巴胺的分泌异常,眼压以及脉络膜厚度昼夜节律性的改变,从而对近视造成影响。此外,波长较长的红光成像在视网膜后,更易诱导近视产生,而中短波长的蓝光成像在视网膜之前,能够延缓近视进展。但不同物种对于不同波长光的反应不同,光波长与近视的关系还有待进一步研究。将来的研究可深入探索光照改变近视进展的作用机制,包括光照如何改变多巴胺的水平,引起下游信号通路的改变,从而控制眼轴长度的生长,以及视网膜感光细胞如何接收到不同波长光的信号,从而调节眼部屈光度,以设计合理的人工照明光照强度、组成成分和性质,并将其用于近视防控。
  • [1] MORGAN I G, OHNO-MATSUI K, SAW S M. Myopia. Lancet,2012,379(9827): 1739–1748. doi: 10.1016/S0140-6736(12)60272-4
    [2] HOLDEN B, SANKARIDURG P, SMITH E, et al. Myopia, an underrated global challenge to vision: Where the current data takes us on myopia control. Eye (London),2014,28(2): 142–146. doi: 10.1038/eye.2013.256
    [3] HOLDEN B A, FRICKE T R, WILSON D A, et al. Global prevalence of myopia and high myopia and temporal trends from 2000 through 2050. Ophthalmology,2016,123(5): 1036–1042. doi: 10.1016/j.ophtha.2016.01.006
    [4] WANG J, LI Y, ZHAO Z, et al. School-based epidemiology study of myopia in Tianjin, China. Int Ophthalmol,2020,40(9): 2213–2222. doi: 10.1007/s10792-020-01400-w
    [5] VITALE S, SPERDUTO R D, FERRIS F L, 3rd. Increased prevalence of myopia in the United States between 1971-1972 and 1999-2004. Arch Ophthalmol,2009,127(12): 1632–1639. doi: 10.1001/archophthalmol.2009.303
    [6] XIONG S, SANKARIDURG P, NADUVILATH T, et al. Time spent in outdoor activities in relation to myopia prevention and control: A meta-analysis and systematic review. Acta ophthalmol,2017,95(6): 551–566. doi: 10.1111/aos.13403
    [7] CAO K, WAN Y, YUSUFU M, et al. Significance of outdoor time for myopia prevention: A systematic review and meta-analysis based on randomized controlled trials. Ophthalmic Res,2020,63(2): 97–105. doi: 10.1159/000501937
    [8] WU P C, CHEN C T, CHANG L C,et al . Increased time outdoors is followed by reversal of the long-term trend to reduced visual acuity in Taiwan primary school students. Ophthalmology, 2020,127(11):1462-1469
    [9] HE M, XIANG F, ZENG Y, et al. Effect of time spent outdoors at school on the development of myopia among children in China: A randomized clinical trial. JAMA,2015,314(11): 1142–1148. doi: 10.1001/jama.2015.10803
    [10] GUO Y, LIU L, LV Y, et al. Outdoor jogging and myopia progression in school children from rural Beijing: The Beijing children eye study. Transl Vis Sci Technol,2019,8(3): 2[2021-07-02]. https://doi.org/10.1167/tvst.8.3.2. doi: 10.1167/tvst.8.3.2
    [11] NORTON T T, SIEGWART J T, Jr. Light levels, refractive development, and myopia—A speculative review. Exp Eye Res,2013,114: 48–57. doi: 10.1016/j.exer.2013.05.004
    [12] SHERWIN J C, REACHER M H, KEOGH R H, et al. The association between time spent outdoors and myopia in children and adolescents: A systematic review and meta-analysis. Ophthalmology,2012,119(10): 2141–2151. doi: 10.1016/j.ophtha.2012.04.020
    [13] READ S A, COLLINS M J, VINCENT S J. Light exposure and physical activity in myopic and emmetropic children. Optom Vis Sci,2014,91(3): 330–341. doi: 10.1097/OPX.0000000000000160
    [14] FRENCH A N, ASHBY R S, MORGAN I G, et al. Time outdoors and the prevention of myopia. Exp Eye Res,2013,114: 58–68. doi: 10.1016/j.exer.2013.04.018
    [15] GUAN H, YU N N, WANG H, et al. Impact of various types of near work and time spent outdoors at different times of day on visual acuity and refractive error among Chinese school-going children. PLoS One,2019,14(4): e0215827[2021-07-02]. https://doi.org/10.1371/journal.pone.0215827. doi: 10.1371/journal.pone.0215827
    [16] JIN J X, HUA W J, JIANG X, et al. Effect of outdoor activity on myopia onset and progression in school-aged children in northeast China: The Sujiatun eye care study. BMC Ophthalmol,2015,15: 73[2021-07-02]. https://doi.org/10.1186/s12886-015-0052-9. doi: 10.1186/s12886-015-0052-9
    [17] HUA W J, JIN J X, WU X Y, et al. Elevated light levels in schools have a protective effect on myopia. Ophthalmic Physiol Opt,2015,35(3): 252–262. doi: 10.1111/opo.12207
    [18] WU P C, CHEN C T, LIN K K, et al. Myopia prevention and outdoor light intensity in a school-based cluster randomized trial. Ophthalmology,2018,125(8): 1239–1250. doi: 10.1016/j.ophtha.2017.12.011
    [19] MCKNIGHT C M, SHERWIN J C, YAZAR S, et al. Myopia in young adults is inversely related to an objective marker of ocular sun exposure: the Western Australian Raine cohort study. Am J Ophthalmol,2014,158(5): 1079–1085. doi: 10.1016/j.ajo.2014.07.033
    [20] LI M, LANCA C, TAN C S, et al. Association of time outdoors and patterns of light exposure with myopia in children. Br J Ophthalmol,2021: bjophthalmol-2021-318918[2021-07-02]. https://doi.org/10.1136/bjophthalmol-2021-318918. doi: 10.1136/bjophthalmol-2021-318918
    [21] WEN L, CAO Y, CHENG Q, et al. Objectively measured near work, outdoor exposure and myopia in children. Br J Ophthalmol,2020,104(11): 1542–1547. doi: 10.1136/bjophthalmol-2019-315258
    [22] LINGHAM G, MACKEY D A, ZHU K, et al. Time spent outdoors through childhood and adolescence—assessed by 25-hydroxyvitamin D concentration—and risk of myopia at 20 years. Acta ophthalmol,2021,99(6): 679–687. doi: 10.1111/aos.14709
    [23] PAN C W, QIAN D J, SAW S M. Time outdoors, blood vitamin D status and myopia: A review. Photochem Photobiol Sci,2017,16(3): 426–432. doi: 10.1039/C6PP00292G
    [24] ASHBY R, OHLENDORF A, SCHAEFFEL F. The effect of ambient illuminance on the development of deprivation myopia in chicks. Invest Ophthalmol Vis Sci,2009,50(11): 5348–5354. doi: 10.1167/iovs.09-3419
    [25] ASHBY R S, SCHAEFFEL F. The effect of bright light on lens compensation in chicks. Invest Ophthalmol Vis Sci,2010,51(10): 5247–5253. doi: 10.1167/iovs.09-4689
    [26] SMITH E L, 3rd, HUNG L F, HUANG J. Protective effects of high ambient lighting on the development of form-deprivation myopia in Rhesus monkeys. Invest Ophthalmol Vis Sci,2012,53(1): 421–428. doi: 10.1167/iovs.11-8652
    [27] SHE Z, HUNG L F, ARUMUGAM B, et al. The effects of reduced ambient lighting on lens compensation in infant Rhesus monkeys. Vision Res,2021,187: 14–26. doi: 10.1016/j.visres.2021.05.010
    [28] MCCARTHY C S, MEGAW P, DEVADAS M, et al. Dopaminergic agents affect the ability of brief periods of normal vision to prevent form-deprivation myopia. Exp Eye Res,2007,84(1): 100–107. doi: 10.1016/j.exer.2006.09.018
    [29] FELDKAEMPER M, SCHAEFFEL F. An updated view on the role of dopamine in myopia. Exp Eye Res,2013,114: 106–119. doi: 10.1016/j.exer.2013.02.007
    [30] MEGAW P, MORGAN I, BOELEN M. Vitreal dihydroxyphenylacetic acid (DOPAC) as an index of retinal dopamine release. Neurochem,2001,76(6): 1636–1644. doi: 10.1046/j.1471-4159.2001.00145.x
    [31] CAMERON M A, POZDEYEV N, VUGLER A A, et al. Light regulation of retinal dopamine that is independent of melanopsin phototransduction. Eur J Neurosci,2009,29(4): 761–767. doi: 10.1111/j.1460-9568.2009.06631.x
    [32] KE Y, LI W, TAN Z, et al. Induction of dopamine D1 and D5 receptors in R28 cells by light exposures. Biochem Biophys Res Commun,2017,486(3): 686–692. doi: 10.1016/j.bbrc.2017.03.099
    [33] CHEN S, ZHI Z, RUAN Q, et al. Bright light suppresses form-deprivation myopia development with activation of dopamine D1 receptor signaling in the ON pathway in retina. Invest Ophthalmol Vis Sci,2017,58(4): 2306–2316. doi: 10.1167/iovs.16-20402
    [34] CHAKRABORTY R, READ S A, COLLINS M J. Diurnal variations in axial length, choroidal thickness, intraocular pressure, and ocular biometrics. Invest Ophthalmol Vis Sci,2011,52(8): 5121–5129. doi: 10.1167/iovs.11-7364
    [35] OSTRIN L A. Ocular and systemic melatonin and the influence of light exposure. Clin Exp Optom,2019,102(2): 99–108. doi: 10.1111/cxo.12824
    [36] RAYAPOULLÉ A, GRONFIER C, FORHAN A, et al. Longitudinal association between sleep features and refractive errors in preschoolers from the EDEN birth-cohort. Sci Rep,2021,11(1): 9044[2021-07-02]. https://doi.org/10.1038/s41598-021-88756-w. doi: 10.1038/s41598-021-88756-w
    [37] ULAGANATHAN S, READ S A, COLLINS M J, et al. Influence of seasons upon personal light exposure and longitudinal axial length changes in young adults. Acta ophthalmol,2019,97(2): e256[2021-07-02]. https://doi.org/ 10.1111/aos.13904.doi:10.1111/aos.13904.
    [38] OSTRIN L A, SAJJADI A, BENOIT J S. Objectively measured light exposure during school and summer in children. Optom Vis Sci, 2018, 95(4): 332–342.
    [39] STONE R A, COHEN Y, MCGLINN A M, et al. Development of experimental myopia in chicks in a natural environment. Invest Ophthalmol Vis Sci,2016,57(11): 4779–4789. doi: 10.1167/iovs.16-19310
    [40] BACKHOUSE S, COLLINS A V, PHILLIPS J R. Influence of periodic vs continuous daily bright light exposure on development of experimental myopia in the chick. Ophthalmic Physiol Opt,2013,33(5): 563–572. doi: 10.1111/opo.12069
    [41] NICKLA D L, TOTONELLY K. Brief light exposure at night disrupts the circadian rhythms in eye growth and choroidal thickness in chicks. Exp Eye Res,2016,146: 189–195. doi: 10.1016/j.exer.2016.03.003
    [42] ZHOU X, AN J, WU X, et al. Relative axial myopia induced by prolonged light exposure in C57BL/6 mice. Photochem Photobiol,2010,86(1): 131–137. doi: 10.1111/j.1751-1097.2009.00637.x
    [43] STONE R A, MCGLINN A M, CHAKRABORTY R, et al. Altered ocular parameters from circadian clock gene disruptions. PLoS One,2019,14(6): e0217111[2021-07-02]. https://doi.org/10.1371/journal.pone.0217111. doi: 10.1371/journal.pone.0217111
    [44] JIANG X, KURIHARA T, TORII H, et al. Progress and control of myopia by light environments. Eye Contact Lens,2018,44(5): 273–278. doi: 10.1097/ICL.0000000000000548
    [45] RUCKER F. Monochromatic and white light and the regulation of eye growth. Exp Eye Res,2019,184: 172–182. doi: 10.1016/j.exer.2019.04.020
    [46] NORTON T T, KHANAL S, GAWNE T J. Tree shrews do not maintain emmetropia in initially-focused narrow-band cyan light. Exp Eye Res,2021,206: 108525[2021-07-02]. https://doi.org/10.1016/j.exer.2021.108525. doi: 10.1016/j.exer.2021.108525
    [47] TORII H, KURIHARA T, SEKO Y, et al. Violet light exposure can be a preventive strategy against myopia progression. EBioMedicine,2017,15: 210–219. doi: 10.1016/j.ebiom.2016.12.007
    [48] WILLIAMS K M, BENTHAM G C, YOUNG I S, et al. Association between myopia, ultraviolet B radiation exposure, serum vitamin d concentrations, and genetic polymorphisms in vitamin D metabolic pathways in a multicountry European study. JAMA Ophthalmol,2017,135(1): 47–53. doi: 10.1001/jamaophthalmol.2016.4752
    [49] TORII H, OHNUMA K, KURIHARA T, et al. Violet light transmission is related to myopia progression in adult high myopia. Sci Rep,2017,7(1): 14523[2021-07-02]. https://doi.org/10.1038/s41598-017-09388-7. doi: 10.1038/s41598-017-09388-7
    [50] LIN G, TAYLOR C, RUCKER F. Effect of duration, and temporal modulation, of monochromatic light on emmetropization in chicks. Vision Res,2020,166: 12–19. doi: 10.1016/j.visres.2019.11.002
    [51] FOULDS W S, BARATHI V A, LUU C D. Progressive myopia or hyperopia can be induced in chicks and reversed by manipulation of the chromaticity of ambient light. Invest Ophthalmol Vis Sci,2013,54(13): 8004–8012. doi: 10.1167/iovs.13-12476
    [52] JI S, MAO X, ZHANG Y, et al. Contribution of M-opsin-based color vision to refractive development in mice. Exp Eye Res,2021,209: 108669[2021-07-02]. https://doi.org/10.1016/j.exer.2021.108669. doi: 10.1016/j.exer.2021.108669
    [53] STRICKLAND R, LANDIS E G, PARDUE M T. Short-wavelength (Violet) light protects mice from myopia through cone signaling. Invest Ophthalmol Vis Sci,2020,61(2): 13. doi: 10.1167/iovs.61.2.13
    [54] TIMUCIN O B, ARABACI M, CUCE F, et al. The effects of light sources with different spectral structures on ocular axial length in rainbow trout (Oncorhynchus mykiss). Exp Eye Res,2016,151: 212–221. doi: 10.1016/j.exer.2016.08.018
    [55] LIU R, QIAN Y F, HE J C, et al. Effects of different monochromatic lights on refractive development and eye growth in guinea pigs. Exp Eye Res,2011,92(6): 447–453. doi: 10.1016/j.exer.2011.03.003
    [56] LI W, LAN W, YANG S, et al. The effect of spectral property and intensity of light on natural refractive development and compensation to negative lenses in guinea pigs. Invest Ophthalmol Vis,2014,55(10): 6324–6332. doi: 10.1167/iovs.13-13802
    [57] LIU R, HU M, HE J C, et al. The effects of monochromatic illumination on early eye development in rhesus monkeys. Invest Ophthalmol Vis Sci,2014,55(3): 1901–1909. doi: 10.1167/iovs.13-12276
    [58] GAWNE T J, WARD A H, NORTON T T. Long-wavelength (red) light produces hyperopia in juvenile and adolescent tree shrews. Vision Res,2017,140: 55–65. doi: 10.1016/j.visres.2017.07.011
    [59] GAWNE T J, SIEGWART J T, Jr, WARD A H, et a. The wavelength composition and temporal modulation of ambient lighting strongly affect refractive development in young tree shrews. Exp Eye Res,2017,155: 75–84.
    [60] SMITH E L, 3rd, HUNG L F, ARUMUGAM B, et al. Effects of long-wavelength lighting on refractive development in infant Rhesus monkeys. Invest Ophthalmol Vis Sci,2015,56(11): 6490–6500. doi: 10.1167/iovs.15-17025
    [61] JIANG X, PARDUE M T, MORI K, et al. Violet light suppresses lens-induced myopia via neuropsin (OPN5) in mice. Proc Natl Acad Sci U S A, 2021, 118(22): e2018840118[2021-06-01]. https://www.pnas.org/content/118/22/e2018840118.long. doi: 10.1073/pnas.2018840118.
    [62] NAJJAR R P, CHAO DE LA BARCA J M, BARATHI V A, et al. Ocular growth and metabolomics are dependent upon the spectral content of ambient white light. Sci Rep,2021,11(1): 7586[2021-07-02]. https://doi.org/10.1038/s41598-021-87201-2. doi: 10.1038/s41598-021-87201-2
    [63] LAN W, FELDKAEMPER M, SCHAEFFEL F. Intermittent episodes of bright light suppress myopia in the chicken more than continuous bright light. PLoS One,2014,9(10): e110906[2021-07-02]. https://doi.org/10.1371/journal.pone.0110906. doi: 10.1371/journal.pone.0110906
    [64] LI B, LUO X, LI T, et al. Effects of constant flickering light on refractive status, 5-HT and 5-HT2A receptor in guinea pigs. PLoS One,2016,11(12): e0167902[2021-07-02]. https://doi.org/10.1371/journal.pone.0167902. doi: 10.1371/journal.pone.0167902
    [65] TAO Y, LI X L, SUN L Y, et al. Effect of green flickering light on myopia development and expression of M1 muscarinic acetylcholine receptor in guinea pigs. Int J Ophthalmol,2018,11(11): 1755–1760. doi: 10.18240/ijo.2018.11.04
    [66] DI Y, LU N, LI B, et al. Effects of chronic exposure to 0.5 Hz and 5 Hz flickering illumination on the eye growth of guinea pigs. Curr Eye Res, 2013 38(11):1182-1190.
    [67] TAO Y, LI X L, SUN L Y, et al. Effect of green flickering light on myopia development and expression of M1 muscarinic acetylcholine receptor in guinea pigs. Int J Ophthalmol, 2018, 11(11): 1755-1760.
    [68] CREWTHER S G, BARUTCHU A, MURPHY M J, et al. Low frequency temporal modulation of light promotes a myopic shift in refractive compensation to all spectacle lenses. Exp Eye Res, 2006, 83(2):322-328.
  • 加载中
计量
  • 文章访问数:  163
  • HTML全文浏览量:  55
  • PDF下载量:  34
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-31
  • 修回日期:  2021-11-02
  • 刊出日期:  2021-11-20

目录

    /

    返回文章
    返回