欢迎来到《四川大学学报(医学版)》

胆管替代物研究进展

杨丽萍 林圯昕 冯莉 蒋霞

杨丽萍, 林圯昕, 冯莉, 等. 胆管替代物研究进展[J]. 四川大学学报(医学版), 2021, 52(6): 917-922. doi: 10.12182/20211160203
引用本文: 杨丽萍, 林圯昕, 冯莉, 等. 胆管替代物研究进展[J]. 四川大学学报(医学版), 2021, 52(6): 917-922. doi: 10.12182/20211160203
YANG Li-ping, LIN Yi-xin, FENG Li, et al. Review of Research Progress in Biliary Substitutes[J]. JOURNAL OF SICHUAN UNIVERSITY (MEDICAL SCIENCE EDITION), 2021, 52(6): 917-922. doi: 10.12182/20211160203
Citation: YANG Li-ping, LIN Yi-xin, FENG Li, et al. Review of Research Progress in Biliary Substitutes[J]. JOURNAL OF SICHUAN UNIVERSITY (MEDICAL SCIENCE EDITION), 2021, 52(6): 917-922. doi: 10.12182/20211160203

胆管替代物研究进展

doi: 10.12182/20211160203
基金项目: 国家自然科学基金(No. 51203100)和中国博士后科学基金面上资助(No. 2013M531967)资助
详细信息
    通讯作者:

    E-mail:jiangxia@wchscu.cn

Review of Research Progress in Biliary Substitutes

More Information
  • 摘要: 胆管替代物的研发是现代胆道外科不可或缺的组成部分,是恢复胆道系统正常功能的途径,具有重大的临床意义。胆管替代物植入体内后,导致移植部位出现的胆道堵塞或狭窄是人工胆管研究中最迫切需要解决的问题,其根本原因是胆道替代物慢性炎性刺激导致的组织增生,促进移植部位新生胆管组织的形成可解决这一问题。本文通过总结国内外的文献,对非降解型人工胆管、降解型人工胆管,以及组织工程化人工胆管的研究与开发进行综述,以期为胆道替代物的进一步发展提供参考。未来的研究应重点关注如何快速在组织工程化人工胆管壁形成胆道上皮层、促进新生胆道组织形成、调控人工胆管降解性能和力学性能等几个方面,从根本上解决人工胆管研究中面临的问题,推进人工胆管研发的进程。
  • [1] BIJL E J, BHARWANI K D, HOUWEN R H J, et al. The long-term outcome of the Kasai operation in patients with biliary atresia: A systematic review. Neth J Med, 2013, 71(4):170-173.
    [2] HOPKINS P C, YAZIGI N, NYLUND C M. Incidence of biliary atresia and timing of hepatoportoenterostomy in the United States. J Pediatr, 2017, 187: 253-257[2021-01-17]. https://doi.org/10.1016/j.jpeds.2017.05.006.
    [3] PEARSE H E. Vitallium tubes in biliary surgery. Ann Surg,1942,115(6): 1031–1042. doi: 10.1097/00000658-194206000-00015
    [4] GULATI S M, IYENGAR B, THUSOO T K, et al. Use of dacron velour in choledochoplasty—An experimental-study. Am Surgeon,1983,49(8): 440–445.
    [5] HUGHES J F, LONTZ J F. Correction of biliary obstruction using a novel polytetrafluoroethylene artificial bile duct. Del Med J,1964,36(7): 150–159.
    [6] HARTUNG H, KIRCHNER R, BABA N, et al. Histological, laboratory, and X-ray findings after repair of the common bile duct with a Teflon graft. World J Surg,1978,2(5): 639–642. doi: 10.1007/BF01556064
    [7] MENDELOWITZ D S, BEAL J M. Expanded polytetrafluoroethylene in reconstruction of the canine biliary system. Am J Surg,1982,143(2): 221–224. doi: 10.1016/0002-9610(82)90073-3
    [8] RUKA M, ROWINSKI W A, LIPSKI M, et al. Expanded polytetrafluoroethylene grafts in restoring bile drainage in dogs. Z Exp Chir Transplant Kunstliche Organe,1987,20(6): 317–323.
    [9] GOMEZ N A, ALVAREZ L R, MITE A, et al. Repair of bile duct injuries with Gore-Tex vascular grafts: experimental study in dogs. J Gastrointest Surg,2002,6(1): 116–120. doi: 10.1016/S1091-255X(01)00038-5
    [10] 皋岚雅, 焦成文, 王坚, 等. 复合型人工胆管实验研究. 肝胆胰外科杂志,2010,22(6): 450–452.
    [11] 黄华新, 王琛, 裴芳君, 等. 真丝人造胆管替代胆总管的实验研究. 兰州医学院学报,1999,25(1): 36–38.
    [12] 许建衡, 郭光华, 张津, 等. 聚氨酯胆管假体的制作. 世界华人消化杂志,2000,8(7): 817–818. doi: 10.3969/j.issn.1009-3079.2000.07.026
    [13] 刘凯, 王广义, 刘松阳, 等. 氟橡胶246B制成仿生阀门人工胆管植入犬体内的生物学效应. 中国组织工程研究与临床康复,2009,13(21): 4113–4117.
    [14] GINSBERG G, COPE C, SHAH J, et al. In vivoevaluation of a new bioabsorbable self-expanding biliary stent. Gastrointest Endosc,2003,58(5): 777–784. doi: 10.1016/S0016-5107(03)02016-9
    [15] 王敬, 孟波, 周宁新, 等. 可降解聚乳酸支架在胆管损伤治疗中作用的实验研究. 中华肝胆外科杂志,2004,10(12): 841–843. doi: 10.3760/cma.j.issn.1007-8118.2004.12.017
    [16] MIYAZAWA M, TORII T, TOSHIMITSU Y, et al. A tissue-engineered artificial bile duct grown to resemble the native bile duct. Am J Transplant,2005,5(6): 1541–1547. doi: 10.1111/j.1600-6143.2005.00845.x
    [17] AIKAWA M, MIYAZAWA M, OKADA K, et al. Regeneration of extrahepatic bile duct—Possibility to clinical application by recognition of the regenerative process. J Smooth Muscle Res,2007,43(6): 211–218. doi: 10.1540/jsmr.43.211
    [18] AIKAWA M, MIYAZAWA M, OKADA K, et al. M1894 Development of an artificial bile duct made of bioabsorbable polymer to be used for treatment of biliary stenosis. Gastroenterology,2008,134(4): A-805. doi: 10.1016/s0016-5085(08)63762-2
    [19] TASHIRO H, OGAWA T, ITAMOTO T, et al. Synthetic bioabsorbable stent material for duct-to-duct biliary reconstruction. J Surg Res,2009,151(1): 85–88. doi: 10.1016/j.jss.2008.02.056
    [20] PARK S H, KANG B K, LEE J E, et al. Design and fabrication of a thin-walled free-form scaffold on the basis of medical image data and a 3D printed template: Its potential use in bile duct regeneration. ACS Appl Mater Interfaces,2017,9(14): 12290–12298. doi: 10.1021/acsami.7b00849
    [21] LI H H, YIN Y X, XIANG Y, et al. A novel 3D printing PCL/GelMA scaffold containing USPIO for MRI-guided bile duct repair. Biomed Mater,2020,15(4): 045004[2021-01-17]. https://doi.org/10.1088/1748-605X/ab797a. doi: 10.1088/1748-605X/ab797a
    [22] ROSEN M. Small intestinal submucosa as a bioscaffold for biliary tract regeneration. Surgery,2002,132(3): 480–486. doi: 10.1067/msy.2002.126505
    [23] GOMEZ N A, ZAPATIER J A, VARGAS P E. Re: "Small intestinal submucosa as a bioscaffold for biliary tract regeneration". Surgery,2004,135(4): 460. doi: 10.1016/j.surg.2003.06.004
    [24] 陈刚, 白建华, 朱新锋等. 脱细胞真皮基质修复猪胆管缺损: 促进血管及胆管上皮再生. 中国组织工程研究与临床康复,2015,19(43): 6940–6945.
    [25] SHANG H, ZENG J P, WANG S Y, et al. Extrahepatic bile duct reconstruction in pigs with heterogenous animal-derived artificial bile ducts: A preliminary experience. World J Gastroenterol,2020,26(46): 7312–7324. doi: 10.3748/wjg.v26.i46.7312
    [26] NAKASHIMA S, NAKAMURA T, MIYAGAWA K, et al. In situtissue engineering of the bile duct using polypropylene mesh-collagen tubes. Int J Artif Organs,2007,30(1): 75–85. doi: 10.1177/039139880703000110
    [27] LI Q, TAO L, CHEN B, et al. Extrahepatic bile duct regeneration in pigs using collagen scaffolds loaded with human collagen-binding bFGF. Biomaterials,2012,33(17): 4298–4308. doi: 10.1016/j.biomaterials.2012.03.003
    [28] ALONSO A J P, RIVAS C D, ROMERO I M, et al. Tissue-engineering repair of extrahepatic bile ducts. J Surg Res,2013,179(1): 18–21. doi: 10.1016/j.jss.2012.08.035
    [29] MIYAZAWA M, AIKAWA M, OKADA K, et al. Regeneration of extrahepatic bile ducts by tissue engineering with a bioabsorbable polymer. J Artif Organs,2012,15(1): 26–31. doi: 10.1007/s10047-011-0590-8
    [30] SCHIER F, SCHIER C, GEHRKE I, et al. Biliary atresia—Bile-acids and prostaglandin-E2 in cell-cultures of bile-duct epithelia. Eur J Pediatr Surg,1993,3(4): 213–216. doi: 10.1055/s-2008-1063546
    [31] NAKAJIMA T, OKUDA Y, CHISAKI K, et al. Bile acids increase intracellular Ca2+ concentration and nitric oxide production in vascular endothelial cells. Br J Pharmacol,2000,130(7): 1457–1467. doi: 10.1038/sj.bjp.0703471
    [32] SAMPAZIOTIS F, JUSTIN A W, TYSOE O C, et al. Reconstruction of the mouse extrahepatic biliary tree using primary human extrahepatic cholangiocyte organoids. Nat Med,2017,23(8): 954–963. doi: 10.1038/nm.4360
    [33] ZHANG Y, SHARMA A, JOO D J, et al. Autologous adipose tissue-derived mesenchymal stem cells introduced by biliary stents or local immersion in porcine bile duct anastomoses. Liver Transplant,2020,26(1): 100–112. doi: 10.1002/lt.25682
    [34] SAMPAZIOTIS F, MURARO D, TYSOE O C, et al. Cholangiocyte organoids can repair bile ducts after transplantation in the human liver. Science,2021,371(6531): 839–846. doi: 10.1126/science.aaz6964
  • 加载中
计量
  • 文章访问数:  75
  • HTML全文浏览量:  13
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-19
  • 修回日期:  2021-10-09
  • 刊出日期:  2021-11-20

目录

    /

    返回文章
    返回