Abstract:
As a self-protective mechanism for cells to obtain energy by degrading their own structures or substances, autophagy widely occurs in basic physiological process of all kinds of eukaryotic cells. In recent years, studies have shown that autophagy can be induced through a variety of mechanical transduction pathways when various tissues and cells are exposed to different types of mechanical stress, and cells and tissues involved can thus regulate cell metabolic functions and participate in the pathological process of a variety of diseases. The stress receptors on the cell membrane and the multiple signaling pathways and cytoskeletons have been shown to play an important role in this process. At present, due to the difficulties in the establishment of the stress loading model and the limitations in the research methods concerned, the specific mechanical transduction mechanisms of autophagy induced by mechanical stress is not clear. Therefore, more reliable
in vitro and
in vivo models and more advanced research methodology are needed to investigate the mechanical transduction process of autophagy induced by mechanical stress, and to promote ultimately progress in the understanding of autophagy-related diseases and their treatments. This article reviewed the regulatory role of mechanical stress on autophagy in physiological and disease processes and the signal transduction process related to autophagy induced by mechanical stress.