欢迎来到《四川大学学报(医学版)》

应力诱导自噬的机械转导过程研究进展

蒋玉坤 胡芝爱 关禹哲 周陈晨 邹淑娟

蒋玉坤, 胡芝爱, 关禹哲, 等. 应力诱导自噬的机械转导过程研究进展[J]. 四川大学学报(医学版), 2021, 52(6): 929-935. doi: 10.12182/20211160102
引用本文: 蒋玉坤, 胡芝爱, 关禹哲, 等. 应力诱导自噬的机械转导过程研究进展[J]. 四川大学学报(医学版), 2021, 52(6): 929-935. doi: 10.12182/20211160102
JIANG Yu-kun, HU Zhi-ai, GUAN Yu-zhe, et al. Research Progress in Mechanotransduction Process of Mechanical-Stress-Induced Autophagy[J]. JOURNAL OF SICHUAN UNIVERSITY (MEDICAL SCIENCE EDITION), 2021, 52(6): 929-935. doi: 10.12182/20211160102
Citation: JIANG Yu-kun, HU Zhi-ai, GUAN Yu-zhe, et al. Research Progress in Mechanotransduction Process of Mechanical-Stress-Induced Autophagy[J]. JOURNAL OF SICHUAN UNIVERSITY (MEDICAL SCIENCE EDITION), 2021, 52(6): 929-935. doi: 10.12182/20211160102

应力诱导自噬的机械转导过程研究进展

doi: 10.12182/20211160102
基金项目: 国家自然科学基金(No. 82071150)资助
详细信息
    通讯作者:

    E-mail:Shujuanzou@aliyun.com

Research Progress in Mechanotransduction Process of Mechanical-Stress-Induced Autophagy

More Information
  • 摘要: 细胞自噬广泛发生在所有真核细胞的基础生理过程中,是细胞通过降解自身结构或物质从而获得能量的一种自我保护机制。近年来,学者们发现各种组织和细胞在体内受到不同类型的机械应力同样可以通过多种机械转导途径诱导自噬,调控细胞代谢功能,并参与多种疾病的病理过程。细胞膜上的应力感受器以及细胞内的多条信号通路和细胞骨架已被证明在该过程中发挥了重要作用。目前,由于应力加载模型建立的困难以及相关研究手段的局限,机械应力诱导细胞自噬的具体机械转导机制尚不清楚。因此,需要更可靠的体内外模型和更先进的研究方法来了解机械应力诱导自噬的机械转导过程,并最终促进自噬相关疾病及其治疗方法的进展。本文就机械应力在生理及疾病过程中对自噬的调节作用以及机械应力诱导自噬的相关信号转导过程作一综述。
  • [1] PARZYCH K R, KLIONSKY D J. An overview of autophagy: Morphology, mechanism, and regulation. Antioxid Redox Signal,2014,20(3): 460–473. doi: 10.1089/ars.2013.5371
    [2] HUANG F, WANG B R, WANG Y G. Role of autophagy in tumorigenesis, metastasis, targeted therapy and drug resistance of hepatocellular carcinoma. World J Gastroenterol,2018,24(41): 4643–4651. doi: 10.3748/wjg.v24.i41.4643
    [3] KROEMER G, MARINO G, LEVINE B. Autophagy and the integrated stress response. Mol Cell,2010,40(2): 280–293. doi: 10.1016/j.molcel.2010.09.023
    [4] LIU Y, BASSHAM D C. Autophagy: Pathways for self-eating in plant cells. Annu Rev Plant Biol,2012,63: 215–237. doi: 10.1146/annurev-arplant-042811-105441
    [5] DUPONT N, CODOGNO P. Autophagy transduces physical constraints into biological responses. Int J Biochem Cell Biol,2016,79: 419–426. doi: 10.1016/j.biocel.2016.08.021
    [6] KANAMORI H, TAKEMURA G, GOTO K, et al. The role of autophagy emerging in postinfarction cardiac remodelling. Cardiovasc Res,2011,91(2): 330–339. doi: 10.1093/cvr/cvr073
    [7] GAWLITTA D, LI W, OOMENS C W, et al. The relative contributions of compression and hypoxia to development of muscle tissue damage: An in vitro study. Ann Biomed Eng,2007,35(2): 273–284. doi: 10.1007/s10439-006-9222-5
    [8] SCOTT R C, JUHÁSZ G, NEUFELD T P. Direct induction of autophagy by Atg1 inhibits cell growth and induces apoptotic cell death. Curr Biol,2007,17(1): 1–11. doi: 10.1016/j.cub.2006.10.053
    [9] CHEN C S. Mechanotransduction—A field pulling together? J Cell Sci,2008,121(Pt 20): 3285–3292. doi: 10.1242/jcs.023507
    [10] KING J S. Mechanical stress meets autophagy: Potential implications for physiology and pathology. Trends Mol Med,2012,18(10): 583–588. doi: 10.1016/j.molmed.2012.08.002
    [11] KING J S, VELTMAN D M, INSALL R H. The induction of autophagy by mechanical stress. Autophagy,2011,7(12): 1490–1499. doi: 10.4161/auto.7.12.17924
    [12] MA K G, SHAO Z W, YANG S H, et al. Autophagy is activated in compression-induced cell degeneration and is mediated by reactive oxygen species in nucleus pulposus cells exposed to compression. Osteoarthritis Cartilage,2013,21(12): 2030–2038. doi: 10.1016/j.joca.2013.10.002
    [13] HUANG Y, LIU H, GUO R, et al. Long non-coding RNA FER1L4 mediates the autophagy of periodontal ligament stem cells under orthodontic compressive force via AKT/FOXO3 pathway. Front Cell Dev Biol, 2021, 9: 631181[2020-11-15]. https://doi.org/10.3389/fcell.2021.631181.
    [14] DAS J, AGARWAL T, CHAKRABORTY S, et al. Compressive stress-induced autophagy promotes invasion of HeLa cells by facilitating protein turnover in vitro. Exp Cell Res,2019,381(2): 201–207. doi: 10.1016/j.yexcr.2019.04.037
    [15] LI W, ZHAO J, SUN W, et al. Osteocytes promote osteoclastogenesis via autophagy-mediated RANKL secretion under mechanical compressive force. Arch Biochem Biophys, 2020, 694: 108594[2020-11-20]. https://doi.org/10.1016/j.abb.2020.108594.
    [16] LI D, LU Z, XU Z, et al. Spironolactone promotes autophagy via inhibiting PI3K/AKT/mTOR signalling pathway and reduce adhesive capacity damage in podocytes under mechanical stress. Biosci Rep, 2016, 36(4): e00355[2020-11-20]. https://doi.org/10.1042/BSR20160086.
    [17] INABA N, KUROSHIMA S, UTO Y, et al. Cyclic mechanical stretch contributes to network development of osteocyte-like cells with morphological change and autophagy promotion but without preferential cell alignment in rat. Biochem Biophys Rep,2017,11: 191–197. doi: 10.1016/j.bbrep.2017.04.018
    [18] ZHOU Z, SHI G, ZHENG X, et al. Autophagy activation facilitates mechanical stimulation-promoted osteoblast differentiation and ameliorates hindlimb unloading-induced bone loss. Biochem Biophys Res Commun,2018,498(3): 667–673. doi: 10.1016/j.bbrc.2018.03.040
    [19] XIANG W, JIANG T, HAO X, et al. Primary cilia and autophagy interaction is involved in mechanical stress mediated cartilage development via ERK/mTOR axis. Life Sci,2019,218: 308–313. doi: 10.1016/j.lfs.2019.01.001
    [20] SUN K, LIU F, WANG J, et al. The effect of mechanical stretch stress on the differentiation and apoptosis of human growth plate chondrocytes. In Vitro Cell Dev Biol Anim,2017,53(2): 141–148. doi: 10.1007/s11626-016-0090-5
    [21] LIN L, TANG C, XU J, et al. Mechanical stress triggers cardiomyocyte autophagy through angiotensin Ⅱ type 1 receptor-mediated p38MAP kinase independently of angiotensin Ⅱ. PLoS One, 2014, 9(2): e89629[2020-11-20]. https://doi.org/10.1371/journal.pone.0089629.
    [22] ZHAO L, TIAN B, XU Q, et al. Extensive mechanical tension promotes annulus fibrosus cell senescence through suppressing cellular autophagy. Biosci Rep,2019,39(4): BSR20190163. doi: 10.1042/BSR20190163
    [23] TAKAHASHI K, MATSUMOTO Y, DO E Z, et al. Combination therapy with atorvastatin and amlodipine suppresses angiotensin Ⅱ-induced aortic aneurysm formation. PLoS One, 2013, 8(8): e72558[2020-11-20]. https://doi.org/10.1371/journal.pone.0072558.
    [24] GAROFFOLO G, FERRARI S, RIZZI S, et al. Harnessing mechanosensation in next generation cardiovascular tissue engineering. Biomolecules,2020,10(10): 1419. doi: 10.3390/biom10101419
    [25] YAO P, ZHAO H, MO W, et al. Laminar shear stress promotes vascular endothelial cell autophagy through upregulation with Rab4. DNA Cell Biol,2016,35(3): 118–123. doi: 10.1089/dna.2015.3041
    [26] YUAN P, HU Q, HE X, et al. Laminar flow inhibits the Hippo/YAP pathway via autophagy and SIRT1-mediated deacetylation against atherosclerosis. Cell Death Dis,2020,11(2): 141. doi: 10.1038/s41419-020-2343-1
    [27] LIU J, BI X, CHEN T, et al. Shear stress regulates endothelial cell autophagy via redox regulation and Sirt1 expression. Cell Death Dis, 2015, 6(7): e1827[2020-11-15]. https://www.nature.com/articles/cddis2015193.doi:10.1038/cddis.2015.193" target="_blank">10.1038/cddis.2015.193">https://www.nature.com/articles/cddis2015193.doi:10.1038/cddis.2015.193.
    [28] SUN L, ZHAO M, LIU A, et al. Shear stress induces phenotypic modulation of vascular smooth muscle cells via AMPK/mTOR/ULK1-mediated autophagy. Cell Mol Neurobiol,2018,38(2): 541–548. doi: 10.1007/s10571-017-0505-1
    [29] YANG Q, LI X, LI R, et al. Low shear stress inhibited endothelial cell autophagy through TET2 downregulation. Ann Biomed Eng,2016,44(7): 2218–2227. doi: 10.1007/s10439-015-1491-4
    [30] LIU H Z, LI L, CHEN S L, et al. Low shear stress regulating autophagy mediated by the p38 mitogen activated protein kinase and p53 pathways in human umbilical vein endothelial cells. Chin Med J (Engl),2018,131(9): 1132–1133. doi: 10.4103/0366-6999.230724
    [31] BOUKHALFA A, NASCIMBENI A C, RAMEL D, et al. PI3KC2α-dependent and VPS34-independent generation of PI3P controls primary cilium-mediated autophagy in response to shear stress. Nat Commun,2020,11(1): 294. doi: 10.1038/s41467-019-14086-1
    [32] LIEN S C, CHANG S F, LEE P L, et al. Mechanical regulation of cancer cell apoptosis and autophagy: Roles of bone morphogenetic protein receptor, Smad1/5, and p38 MAPK. Biochim Biophys Acta,2013,1833(12): 3124–3133. doi: 10.1016/j.bbamcr.2013.08.023
    [33] DAS J, MAJI S, AGARWAL T, et al. Hemodynamic shear stress induces protective autophagy in HeLa cells through lipid raft-mediated mechanotransduction. Clin Exp Metastasis,2018,35(3): 135–148. doi: 10.1007/s10585-018-9887-9
    [34] CARAMÉS B, TANIGUCHI N, SEINO D, et al. Mechanical injury suppresses autophagy regulators and pharmacologic activation of autophagy results in chondroprotection. Arthritis Rheum,2012,64(4): 1182–1192. doi: 10.1002/art.33444
    [35] LI Y, RANDRIANTSILEFISOA R, CHEN J, et al. Matrix stiffness regulates chemosensitivity, stemness characteristics, and autophagy in breast cancer cells. Acs Applied Bio Materials,2020,3(7): 4474–4485. doi: 10.1021/acsabm.0c00448
    [36] DENG L, XU F, WANG Y, et al. Stiffness of substrate influences the distribution but not the synthesis of autophagosomes in human liver (LO2) cells. J Adv Biomed Eng Techno, 2015, 2: 1-12[2020-11-15]. http://dx.doi.org/10.15379/2409-3394.2015.02.01.1.
    [37] HU M, JIA F, HUANG W, et al. Substrate stiffness differentially impacts autophagy of endothelial cells and smooth muscle cells. Bioact Mater,2021,6(5): 1413–1422. doi: 10.1016/j.bioactmat.2020.10.013
    [38] ULBRICHT A, EPPLER F, TAPIA V, et al. Cellular mechanotransduction relies on tension-induced and chaperone-assisted autophagy. Curr Biol,2013,23(5): 430–435. doi: 10.1016/j.cub.2013.01.064
    [39] PAVEL M, RENNA M, PARK S, et al. Contact inhibition controls cell survival and proliferation via YAP/TAZ-autophagy axis. Nat Commun,2018,9(1): 2961. doi: 10.1038/s41467-018-05388-x
    [40] LAJOIE P, GOETZ J G, DENNIS J W, et al. Lattices, rafts, and scaffolds: Domain regulation of receptor signaling at the plasma membrane. J Cell Biol,2009,185(3): 381–385. doi: 10.1083/jcb.200811059
    [41] FUENTES D E, BUTLER P J. Coordinated mechanosensitivity of membrane rafts and focal adhesions. Cell Mol Bioeng,2012,5(2): 143–154. doi: 10.1007/s12195-012-0225-z
    [42] PALA R, ALOMARI N, NAULI S M. Primary cilium-dependent signaling mechanisms. Int J Mol Sci,2017,18(11): 2272. doi: 10.3390/ijms18112272
    [43] ORHON I, DUPONT N, ZAIDAN M, et al. Primary-cilium-dependent autophagy controls epithelial cell volume in response to fluid flow. Nat Cell Biol,2016,18(6): 657–667. doi: 10.1038/ncb3360
    [44] BOUKHALFA A, NASCIMBENI A C, DUPONT N, et al. Primary cilium-dependent autophagy drafts PIK3C2A to generate PtdIns3P in response to shear stress. Autophagy,2020,16(6): 1143–1144. doi: 10.1080/15548627.2020.1732687
    [45] CHEN S, QIN L, WU X, et al. Moderate fluid shear stress regulates heme oxygenase-1 expression to promote autophagy and ECM homeostasis in the nucleus pulposus cells. Front Cell Dev Biol, 2020, 8: 127[2020-11-15]. https://doi.org/10.3389/fcell.2020.00127.
    [46] SUKHAREV S, COREY D P. Mechanosensitive channels: Multiplicity of families and gating paradigms. Sci STKE,2004,2004(219): re4. doi: 10.1126/stke.2192004re4
    [47] KONDRATSKYI A, KONDRATSKA K, SKRYMA R, et al. Ion channels in the regulation of autophagy. Autophagy,2018,14(1): 3–21. doi: 10.1080/15548627.2017.1384887
    [48] AO X, ZOU L, WU Y. Regulation of autophagy by the Rab GTPase network. Cell Death Differ,2014,21(3): 348–358. doi: 10.1038/cdd.2013.187
    [49] YAN Z, SU G, GAO W, et al. Fluid shear stress induces cell migration and invasion via activating autophagy in HepG2 cells. Cell Adh Migr,2019,13(1): 152–163. doi: 10.1080/19336918.2019.1568141
    [50] THOMPSON W R, RUBIN C T, RUBIN J. Mechanical regulation of signaling pathways in bone. Gene,2012,503(2): 179–193. doi: 10.1016/j.gene.2012.04.076
    [51] KAST D J, DOMINGUEZ R. The cytoskeleton-autophagy connection. Curr Biol,2017,27(8): R318–R326. doi: 10.1016/j.cub.2017.02.061
    [52] OHASHI K, FUJIWARA S, MIZUNO K. Roles of the cytoskeleton, cell adhesion and RHO signalling in mechanosensing and mechanotransduction. J Biochem,2017,161(3): 245–254. doi: 10.1093/jb/mvw082
    [53] TAKEUCHI H, KONDO Y, FUJIWARA K, et al. Synergistic augmentation of rapamycin-induced autophagy in malignant glioma cells by phosphatidylinositol 3-kinase/protein kinase B inhibitors. Cancer Res,2005,65(8): 3336–3346. doi: 10.1158/0008-5472.CAN-04-3640
    [54] LI Z, WANG J, DENG X, et al. Compression stress induces nucleus pulposus cell autophagy by inhibition of the PI3K/AKT/mTOR pathway and activation of the JNK pathway. Connect Tissue Res,2021,62(3): 337–349. doi: 10.1080/03008207.2020.1736578
    [55] WANG X, ZHANG Y, FENG T, et al. Fluid shear stress promotes autophagy in hepatocellular carcinoma cells. Int J Biol Sci,2018,14(10): 1277–1290. doi: 10.7150/ijbs.27055
    [56] HARDIE D G. AMP-activated/SNF1 protein kinases: Conserved guardians of cellular energy. Nat Rev Mol Cell Biol,2007,8(10): 774–785. doi: 10.1038/nrm2249
    [57] ALERS S, LÖFFLER A S, WESSELBORG S, et al. Role of AMPK-mTOR-Ulk1/2 in the regulation of autophagy: cross talk, shortcuts, and feedbacks. Mol Cell Biol,2012,32(1): 2–11. doi: 10.1128/MCB.06159-11
    [58] GU Y, MA L J, BAI X X, et al. Mitogen-activated protein kinase phosphatase 1 protects PC12 cells from amyloid beta-induced neurotoxicity. Neural Regen Res,2018,13(10): 1842–1850. doi: 10.4103/1673-5374.238621
    [59] KYRIAKIS J M, AVRUCH J. Mammalian MAPK signal transduction pathways activated by stress and inflammation: A 10-year update. Physiol Rev,2012,92(2): 689–737. doi: 10.1152/physrev.00028.2011
    [60] SUI X, KONG N, YE L, et al. p38 and JNK MAPK pathways control the balance of apoptosis and autophagy in response to chemotherapeutic agents. Cancer Lett,2014,344(2): 174–179. doi: 10.1016/j.canlet.2013.11.019
    [61] SANTINON G, POCATERRA A, DUPONT S. Control of YAP/TAZ activity by metabolic and nutrient-sensing pathways. Trends Cell Biol,2016,26(4): 289–299. doi: 10.1016/j.tcb.2015.11.004
    [62] DUPONT S, MORSUT L, ARAGONA M, et al. Role of YAP/TAZ in mechanotransduction. Nature,2011,474(7350): 179–183. doi: 10.1038/nature10137
    [63] TOTARO A, ZHUANG Q, PANCIERA T, et al. Cell phenotypic plasticity requires autophagic flux driven by YAP/TAZ mechanotransduction. Proc Natl Acad Sci U S A,2019,116(36): 17848–17857. doi: 10.1073/pnas.1908228116
    [64] DENNIS E A, NORRIS P C. Eicosanoid storm in infection and inflammation. Nat Rev Immunol,2015,15(8): 511–523. doi: 10.1038/nri3859
    [65] MARTÍNEZ-COLÓN G J, MOORE B B. Prostaglandin E(2) as a regulator of immunity to pathogens. Pharmacol Ther,2018,185: 135–146. doi: 10.1016/j.pharmthera.2017.12.008
    [66] CHEN H, CHEN L, CHENG B, et al. Cyclic mechanical stretching induces autophagic cell death in tenofibroblasts through activation of prostaglandin E2 production. Cell Physiol Biochem,2015,36(1): 24–33. doi: 10.1159/000374050
  • 加载中
计量
  • 文章访问数:  69
  • HTML全文浏览量:  9
  • PDF下载量:  9
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-25
  • 修回日期:  2021-08-07
  • 刊出日期:  2021-11-20

目录

    /

    返回文章
    返回