欢迎来到《四川大学学报(医学版)》

布鲁赫膜在近视发生与发展中的机制研究

李周越 杨晓

李周越, 杨晓. 布鲁赫膜在近视发生与发展中的机制研究[J]. 四川大学学报(医学版), 2021, 52(6): 913-916. doi: 10.12182/20211160101
引用本文: 李周越, 杨晓. 布鲁赫膜在近视发生与发展中的机制研究[J]. 四川大学学报(医学版), 2021, 52(6): 913-916. doi: 10.12182/20211160101
LI Zhou-yue, YANG Xiao. Mechanism of Bruch’s Membrane in the Occurrence and Development of Myopia[J]. JOURNAL OF SICHUAN UNIVERSITY (MEDICAL SCIENCE EDITION), 2021, 52(6): 913-916. doi: 10.12182/20211160101
Citation: LI Zhou-yue, YANG Xiao. Mechanism of Bruch’s Membrane in the Occurrence and Development of Myopia[J]. JOURNAL OF SICHUAN UNIVERSITY (MEDICAL SCIENCE EDITION), 2021, 52(6): 913-916. doi: 10.12182/20211160101

栏目: 文献综述

布鲁赫膜在近视发生与发展中的机制研究

doi: 10.12182/20211160101
详细信息
    通讯作者:

    E-mail:Yangx_zoc@163.com

Mechanism of Bruch’s Membrane in the Occurrence and Development of Myopia

More Information
  • 摘要: 近视是一个正视化失代偿后眼球壁重构、眼轴不断增长的过程,但在这个过程中,眼底结构特征性变化之间的因果关系尚不明确。脉络膜位于视网膜和巩膜之间,在与近视相关的信息传递过程中起着承上启下的作用,其在近视眼中的作用是近几年研究的热点。动物实验发现,形觉剥夺引起的脉络膜厚度变化可能与其血管灌注情况有关,但近视化过程中引起脉络膜的血管灌注发生改变的启动机制仍需探讨。布鲁赫膜(Bruch’s membrane)是一种位于脉络膜前的具有良好舒缩能力的弹性膜组织。在近视化过程中,布鲁赫膜的合成或生物力学发生区域性的变化,可能是最早引起脉络膜厚度与血流变化的结构基础。本文以脉络膜厚度作为切入点做一综述,着重探讨布鲁赫膜在近视发生与发展过程中的作用机制,进一步深化对脉络膜厚度变化机制的理解,为开发新的近视治疗靶点提供理论依据。
  • [1] MORGAN I G, OHNO-MATSUI K, SAW S M. Myopia. Lancet,2012,379(9827): 1739–1748. doi: 10.1016/S0140-6736(12)60272-4
    [2] HOLDEN B A, FRICKE T R, WILSON D A, et al. Global prevalence of myopia and high myopia and temporal trends from 2000 through 2050. Ophthalmology,2016,123(5): 1036–1042. doi: 10.1016/j.ophtha.2016.01.006
    [3] JAGADEESH D, PHILIP K, FEDTKE C, et al. Posterior segment conditions associated with myopia and high myopia. Clin Exp Optom,2020,103(6): 756–765. doi: 10.1111/cxo.13060
    [4] GUO X, XIAO O, CHEN Y, et al. Three-dimensional eye shape, myopic maculopathy, and visual acuity: The Zhongshan Ophthalmic Center-Brien Holden Vision Institute high myopia cohort study. Ophthalmology,2017,124(5): 679–687. doi: 10.1016/j.ophtha.2017.01.009
    [5] WEI W B, XU L, JONAS J B, et al. Subfoveal choroidal thickness: The Beijing eye study. Ophthalmology,2013,120(1): 175–180. doi: 10.1016/j.ophtha.2012.07.048
    [6] PHASUKKIJWATANA N, THAWEERATTANASILP W, LAOTAWEERUNGSAWAT S, et al. Enhanced depth imaging spectral-domain optical coherence tomography of the choroid in Thai population. J Med Assoc Thai,2014,97(9): 947–953.
    [7] CHOH V, LEW M Y, NADEL M W, et al. Effects of interchanging hyperopic defocus and form deprivation stimuli in normal and optic nerve-sectioned chicks. Vision Res,2006,46(6/7): 1070–1079. doi: 10.1016/j.visres.2005.08.020
    [8] NICKLA D L, JORDAN K, YANG J, et al. Brief hyperopic defocus or form deprivation have varying effects on eye growth and ocular rhythms depending on the time-of-day of exposure. Exp Eye Res,2017,161: 132–142. doi: 10.1016/j.exer.2017.06.003
    [9] LEUBE A, KOSTIAL S, ALEX OCHAKOVSKI G, et al. Symmetric visual response to positive and negative induced spherical defocus under monochromatic light conditions. Vision Res,2018,143: 52–57. doi: 10.1016/j.visres.2017.12.003
    [10] NICKLA D L. The phase relationships between the diurnal rhythms in axial length and choroidal thickness and the association with ocular growth rate in chicks. J Comp Physiol A Neuroethol Sens Neural Behav Physiol,2006,192(4): 399–407. doi: 10.1007/s00359-005-0077-2
    [11] LI Z, CUI D, HU Y, et al. Choroidal thickness and axial length changes in myopic children treated with orthokeratology. Cont Lens Anterior Eye,2017,40(6): 417–423. doi: 10.1016/j.clae.2017.09.010
    [12] LI Z, HU Y, CUI D, et al. Change in subfoveal choroidal thickness secondary to orthokeratology and its cessation: A predictor for the change in axial length. Acta Ophthalmol,2019,97(3): e454–e459[2021-05-08] . https://doi.org/10.1111/aos.13866. doi: 10.1111/aos.13866
    [13] WU H, CHEN W, ZHAO F, et al. Scleral hypoxia is a target for myopia control. Proc Natl Acad Sci U S A,2018,115(30): E7091–E71002[021-05-08] .https://doi.org/10.1073/pnas.1721443115. doi: 10.1073/pnas.1721443115
    [14] METLAPALLY R, WILDSOET C F. Scleral mechanisms underlying ocular growth and myopia. Prog Mol Biol Transl Sci,2015,134: 241–248. doi: 10.1016/bs.pmbts.2015.05.005
    [15] OLSEN T W, AABERG S Y, GEROSKI D H, et al. Human sclera: Thickness and surface area. Am J Ophthalmol,1998,125(2): 237–241. doi: 10.1016/S0002-9394(99)80096-8
    [16] FRIBERG T R, LACE J W. A comparison of the elastic properties of human choroid and sclera. Exp Eye Res,1988,47(3): 429–436. doi: 10.1016/0014-4835(88)90053-X
    [17] UGARTE M, HUSSAIN A A, MARSHALL J. An experimental study of the elastic properties of the human Bruch’s membrane-choroid complex: Relevance to ageing. Br J Ophthalmol,2006,90(5): 621–626. doi: 10.1136/bjo.2005.086579
    [18] PIERSCIONEK B K, ASEJCZYK-WIDLICKA M, SCHACHAR R A. The effect of changing intraocular pressure on the corneal and scleral curvatures in the fresh porcine eye. Br J Ophthalmol,2007,91(6): 801–803. doi: 10.1136/bjo.2006.110221
    [19] WANG X, TEOH C, CHAN A, et al. Biomechanical properties of Bruch’s membrane-choroid complex and their influence on optic nerve head biomechanics. Invest Ophthalmol Vis Sci,2018,59(7): 2808–2817. doi: 10.1167/iovs.17-22069
    [20] KO M W, LEUNG L K, LAM D C, et al. Characterization of corneal tangent modulus in vivo. Acta Ophthalmol,2013,91(4): e263–e269[2021-05-08] . https://doi.org/10.1111/aos.12066. doi: 10.1111/aos.12066
    [21] WORTHINGTON K S, WILEY L A, BARTLETT A M, et al. Mechanical properties of murine and porcine ocular tissues in compression. Exp Eye Res,2014,121: 194–199. doi: 10.1016/j.exer.2014.02.020
    [22] WHITCOMB J E, BARNETT V A, OLSEN T W, et al. Ex vivo porcine iris stiffening due to drug stimulation. Exp Eye Res,2009,89(4): 456–461. doi: 10.1016/j.exer.2009.04.014
    [23] CHAKRABORTY R, READ S A, COLLINS M J. Hyperopic defocus and diurnal changes in human choroid and axial length. Optom Vis Sci,2013,90(11): 1187–1198. doi: 10.1097/OPX.0000000000000035
    [24] CHAKRABORTY R, READ S A, COLLINS M J. Monocular myopic defocus and daily changes in axial length and choroidal thickness of human eyes. Exp Eye Res,2012,103: 47–54. doi: 10.1016/j.exer.2012.08.002
    [25] FAN Y Y, JONAS J B, WANG Y X, et al. Horizontal and vertical optic disc rotation. The Beijing eye study. PLoS One, 2017, 12(5): e0175749[2021-05-08].https://doi.org/10.1371/journal.pone.0175749.
    [26] OHNO-MATSUI K, JONAS J B, SPAIDE R F. Macular Bruch membrane holes in highly myopic patchy chorioretinal atrophy. Am J Ophthalmol,2016,166: 22–28. doi: 10.1016/j.ajo.2016.03.019
    [27] JONAS J B, OHNO-MATSUI K, SPAIDE R F, et al. Macular Bruch's membrane defects and axial length: Association with gamma zone and delta zone in peripapillary region. Invest Ophthalmol Vis Sci,2013,54(2): 1295–1302. doi: 10.1167/iovs.12-11352
    [28] GUO Y, LIU L J, TANG P, et al. Optic disc-fovea distance and myopia progression in school children: The Beijing children eye study. Acta Ophthalmol,2018,96(5): e606–e613[2021-05-08]. https://doi.org/10.1111/aos.13728. doi: 10.1111/aos.13728
    [29] JONAS J B, FANG Y, WEBER P, et al. Parapapillary gamma and delta zones in high myopia. Retina,2018,38(5): 931–938. doi: 10.1097/IAE.0000000000001650
    [30] ZHANG Q, XU L, WEI W B, et al. Size and shape of Bruch’s membrane opening in relationship to axial length, gamma zone, and macular Bruch’s membrane defects. Invest Ophthalmol Vis Sci,2019,60(7): 2591–2598. doi: 10.1167/iovs.19-27331
    [31] DONG L, SHI X H, KANG Y K, et al. Amphiregulin and ocular axial length. Acta Ophthalmol,2019,97(3): e460–e470[2021-05-08]. https://doi.org/10.1111/aos.14080. doi: 10.1111/aos.14080
  • 加载中
计量
  • 文章访问数:  104
  • HTML全文浏览量:  22
  • PDF下载量:  14
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-29
  • 修回日期:  2021-10-09
  • 刊出日期:  2021-11-20

目录

    /

    返回文章
    返回