Abstract:
Objective To establish an animal model of reflux renal damage through bladder outlet obstruction.
Methods Sixty male C57BL/6 mice aged 6-8 weeks were randomly assigned to a control group, a sham operation group, and a partial bladder outlet obstruction (PBOO) group, with 20 mice in each group. Laparotomy were performed on the PBOO mice under anesthesia in order to separate the bladder necks and to perform guided partial ligation of the bladder neck with a metal rod of 0.3 mm diameter. Mice in the sham operation group had laparotomy and had their bladder necks separated without ligation. The control group did not receive any treatment. 7 days after the surgery, 12 surviving mice were randomly selected from each group to observe the general changes of the bladder, ureter, renal pelvis and kidney. Retrograde urography was performed through the bladder. Kidney tissues were extracted for histopathological analysis. The expression levels of Vimentin, proliferating cell nuclear antigen (PCNA) and α-smooth muscle actin (α-SMA) were examined with Western blot, immunohistochemistry and immunofluorescence staining tests, respectively.
Results Compared with the control and sham operation group, the bladder, ureter, and renal pelvis of the mice in the PBOO group were significantly enlarged, vesicoureteral reflux was more obvious, the kidney volume and mass increased (P<0.001), and renal parenchyma became thinner (P<0.000 1). Histopathological staining showed glomerular atrophy, renal tubule expansion, tubulointerstitial inflammatory cell infiltration, glomerular basement membrane hyperplasia and obvious interstitial fibrosis. Western blot, immunofluorescence and immunohistochemistry staining showed that the expression levels of Vimentin, PCNA and α-SMA in kidney tissue were elevated (P<0.000 1).
Conclusion After PBOO, the bladder, ureter, and kidney of the mice showed obvious morphological alteration and presented reflux renal fibrosis-like damage. This can be used as an animal model to study the pathological alteration mechanism and therapeutic measures of renal fibrosis caused by bladder outlet obstruction.