Study on the Effect of Polystyrene-Polyvinylpyrrolidone Electrospun Fibre in Inhibiting the Adhesion of Porphyromonas gingivalis
-
摘要:目的 探究聚苯乙烯(PS)及PS-聚乙烯吡咯烷酮(PVP)静电纺丝材料对牙龈卟啉单胞菌黏附能力的影响。方法 采用不锈钢针头及高压电场制备PS及PS-PVP静电纺丝材料;通过扫描电子显微镜观察不同材料表面的牙龈卟啉单胞菌生长黏附状态;通过菌落形成单位(colony forming unit, CFU)测定不同材料表面的牙龈卟啉单胞菌生物膜形成量的变化;通过改变静电纺丝材料表面的电荷性质测定材料表面电荷对牙龈卟啉单胞菌黏附能力的影响。结果 扫描电镜结果显示,PS与PS-PVP均可形成直径0.2 μm的静电纺丝纤维。通过对24 h及48 h的生物膜进行扫描电镜和CFU计数,发现在两种材料表面,牙龈卟啉单胞菌的生物膜黏附量均较少(P<0.05)。在四丁基溴化铵(tetrabutylammonium bromide, TBAB)处理后,PS-PVP静电纺丝材料的表面电荷由负电转为正电,且表面细菌黏附量上升,与未处理的PS及PS-PVP相比差异有统计学意义(P<0.05)。结论 PS及PS-PVP静电纺丝材料可有效降低牙龈卟啉单胞菌的黏附能力,且这种能力可能与材料表面电荷性质相关。Abstract:Objective To explore the effect of polystyrene (PS) and PS-polyvinylpyrrolidone (PVP) electrospun materials on the adhesion ability of Porphyromonas gingivalis (P. gingivalis), a common periodontal pathogen.Methods PS and PS-PVP electrospun materials were prepared with stainless steel needles in high-voltage electric field. The growth and adhesion of P. gingivalis on the surface of different materials were observed with scanning electron microscope (SEM). The changes in the amount of P. gingivalis biofilm formed on the surface of different materials were measured according to viable colony forming units (CFU). The effect of surface charge of the different materials on the adhesion ability of P. gingivalis was determined through changing the charge properties on the surface of the electrospun materials.Results SEM images showed that both PS and PS-PVP can be used to form electrospun fibers with a diameter of 0.2 μm. SEM images and CFU counts of the biofilm at 24 h and 48 h showed that there was a smaller amount of P. gingivalis biofilm on the surface of the two materials (P<0.05). After treatment with tetrabutylammonium bromide (TBAB), the surface charge of the PS-PVP electrospun material changed from being negatively charged to being positively charged, and the amount of bacterial adhesion on the surface increased significantly in comparison to that of untreated PS and PS-PVP materials (P<0.05).Conclusion PS and PS-PVP electrospun materials can be used to reduce the adhesion ability of P. gingivalis on the surface of different materials, and this ability may be related to the surface charge properties of the materials.
-
Keywords:
- Porphyromonas gingivalis /
- Adhesion /
- Electrospun material /
- Surface potential
-
-
-
[1] GRAZIANI F, GENNAI S, SOLINI A, et al. A systematic review and meta-analysis of epidemiologic observational evidence on the effect of periodontitis on diabetes An update of the EFP-AAP review. J Clin Periodontol,2018,45(2): 167–187. DOI: 10.1111/jcpe.12837
[2] 冯希平. 中国居民口腔健康状况——第四次中国口腔健康流行病学调查报告: 2018年中华口腔医学会第十八次口腔预防医学学术年会. 西安, 2018. [3] SAKANAKA A, TAKEUCHI H, KUBONIWA M, et al. Dual lifestyle of Porphyromonas gingivalis in biofilm and gingival cells. Microb Pathog,2016,94: 42–47. DOI: 10.1016/j.micpath.2015.10.003
[4] MARK W J, ROSSETTI B J, RIEKEN C W, et al. Biogeography of a human oral microbiome at the micron scale. Proc Natl Acad Sci U S A,2016,113(6): E791–E800. DOI: 10.1073/pnas.1522149113
[5] ABRANCHES J, ZENG L, KAJFASZ J K, et al. Biology of o
ral Streptococci. Microbiol Spectr,2018,6(5): 10.1128/microbiolspec.GPP3-0042-2018. DOI: 10.1128/microbiolspec.GPP3-0042-2018 [6] MATHEW A, VAQUETTE C, HASHIMI S, et al. Antimicrobial and immunomodulatory surface-functionalized electrospun membranes for bone regeneration. Adv Healthc Mater, 2017, 6(10)[2021-07-15]. https://doi.org/10.1002/adhm.201601345.
[7] ZHAN F, SHENG F, YAN X, et al. Enhancement of antioxidant and antibacterial properties for tannin acid/chitosan/tripolyphosphate nanoparticles filled electrospinning films: Surface modification of sliver nanoparticles. Int J Biol Macromol,2017,104(Pt A): 813–820. DOI: 10.1016/j.ijbiomac.2017.06.114
[8] KAFFASHI B, DAVOODI S, OLIAEI E. Poly(epsilon-caprolactone)/triclosan loaded polylactic acid nanoparticles composite: A long-term antibacterial bionanocomposite with sustained release. Int J Pharm,2016,508(1/2): 10–21. DOI: 10.1016/j.ijpharm.2016.05.009
[9] ZEIGER A S, HINTON B, VAN VLIET K J. Why the dish makes a difference: Quantitative comparison of polystyrene culture surfaces. Acta Biomater,2013,9(7): 7354–7361. DOI: 10.1016/j.actbio.2013.02.035
[10] KURAKULA M, KOTESWARA RAO G S N. Moving polyvinyl pyrrolidone electrospun nanofibers and bioprinted scaffolds toward multidisciplinary biomedical applications. Eur Polym J, 2020, 136: 109919[2021-07-15]. https://doi.org/10.1016/j.eurpolymj.2020.109919.
[11] NIU J, GUO J, DING R, et al. An electrospun fibrous platform for visualizing the critical pH point inducing tooth demineralization. J Mater Chem B,2019,7(27): 4292–4298. DOI: 10.1039/C9TB00392D
[12] TANG Z, LIANG D, CHENG M, et al. Effects of Porphyromonas gingivalis and its underlying mechanisms on Alzheimer-like Tau hyperphosphorylation in Sprague-Dawley rats. J Mol Neurosci,2021,71(1): 89–100. DOI: 10.1007/s12031-020-01629-1
[13] TANG B, GONG T, CUI Y, et al. Characteristics of oral methicillin-resistant Staphylococcus epidermidis isolated from dental plaque. Int J Oral Sci,2020,12(1): 15. DOI: 10.1038/s41368-020-0079-5
[14] BOSTANCI N, BELIBASAKIS G N. Porphyromonas gingivalis: An invasive and evasive opportunistic oral pathogen. FEMS Microbiol Lett,2012,333(1): 1–9. DOI: 10.1111/j.1574-6968.2012.02579.x
[15] SINGHRAO S K, HARDING A, POOLE S, et al. Porphyromonas gingivalis periodontal infection and its putative links with Alzheimer’s disease. Mediators Inflamm, 2015, 2015: 137357[2021-07-15]. https://doi.org/10.1155/2015/137357.
[16] HIRAI K, YAMAGUCHI-TOMIKAWA T, EGUCHI T, et al. Identification and modification of Porphyromonas gingivalis cysteine protease, gingipain, ideal for screening periodontitis. Front Immunol, 2020,11: 1017[2021-09-02]. https://doi.org/10.3389/fimmu.2020.01017.
[17] KUBONIWA M, HOUSER J R, HENDRICKSON E L, et al. Metabolic crosstalk regulates Porphyromonas gingivalis colonization and virulence during oral polymicrobial infection. Nat Microbiol,2017,2(11): 1493–1499. DOI: 10.1038/s41564-017-0021-6
[18] EL-FIQI A, KIM J H, KIM H W. Osteoinductive fibrous scaffolds of biopolymer/mesoporous bioactive glass nanocarriers with excellent bioactivity and long-term delivery of osteogenic drug. ACS Appl Mater Interfaces,2015,7(2): 1140–1152. DOI: 10.1021/am5077759
[19] CHEN X, LIU Y, MIAO L, et al. Controlled release of recombinant human cementum protein 1 from electrospun multiphasic scaffold for cementum regeneration. Int J Nanomedicine,2016,11: 3145–3158. DOI: 10.2147/IJN.S104324
[20] ZHI X, FANG H, BAO C, et al. The immunotoxicity of graphene oxides and the effect of PVP-coating. Biomaterials,2013,34(21): 5254–5261. DOI: 10.1016/j.biomaterials.2013.03.024
[21] TEODORESCU M, BERCEA M. Poly(vinylpyrrolidone)—A versatile polymer for biomedical and beyond medical applications. Polym Plast Technol Eng,2015,54(9): 923–943. DOI: 10.1080/03602559.2014.979506
[22] KHANAL A, NAKASHIMA K. Incorporation and release of cloxacillin sodium in micelles of poly(styrene-b-2-vinyl pyridine-b-ethylene oxide). J Control Release,2005,108(1): 150–160. DOI: 10.1016/j.jconrel.2005.07.018
[23] BASTAKOTI B P, LI Y, GURAGAIN S, et al. Synthesis of mesoporous transition-metal phosphates by polymeric micelle assembly. Chemistry,2016,22(22): 7463–7467. DOI: 10.1002/chem.201600435
[24] LI F, WEIR M D, CHEN J, et al. Effect of charge density of bonding agent containing a new quaternary ammonium methacrylate on antibacterial and bonding properties. Dent Mater,2014,30(4): 433–441. DOI: 10.1016/j.dental.2014.01.002
[25] JUNTER G A, THEBAULT P, LEBRUN L. Polysaccharide-based antibiofilm surfaces. Acta Biomater,2016,30: 13–25. DOI: 10.1016/j.actbio.2015.11.010
-
期刊类型引用(1)
1. 程嘉琳. 体外膜肺氧合联合CRRT治疗急性呼吸窘迫综合征的临床观察. 实用中西医结合临床. 2025(02): 9-12 . 百度学术
其他类型引用(0)