Feasibility Study of Ultra-High-Resolution Low-Dose Temporal Bone CT with 1 024×1 024 Reconstruction Matrix Size
-
摘要:目的 探讨颞骨低剂量CT扫描结合1 024 × 1 024矩阵重建的可行性及重建矩阵大小对图像质量的影响。方法 采用联影160层CT对12具成年男性离体头颅标本分别行常规剂量和低剂量双侧颞骨CT扫描。常规剂量CT采用512×512矩阵和1 024×1 024矩阵重建两组图像,低剂量CT采用1 024×1 024矩阵重建一组图像。比较三组图像的CT值、噪声、信噪比、对比噪声比、15个颞骨解剖结构的可视化评分以及听骨链三维重建结果。结果 低剂量组辐射剂量较常规剂量组降低约50%。常规剂量512×512矩阵、 1 024×1 024矩阵和低剂量1 024×1 024矩阵三组图像空气、软组织和骨的CT值差异均无统计学意义。低剂量1 024×1 024矩阵图像噪声较大,但对于颞骨结构的显示远优于传统常规剂量512×512矩阵图像。常规剂量1 024×1 024矩阵和低剂量1 024×1 024矩阵的三维重建较理想且无明显差距,均可清晰展示锤骨、砧骨、镫骨、耳蜗和迷路的形态、大小、相对位置关系以及听骨链在颅中的定位。结论 采用1 024×1 024矩阵重建行颞骨低剂量CT检查可有效降低辐射剂量,与常规剂量512×512矩阵图像相比,可显著提升图像空间分辨率和颞骨解剖结构可视化。Abstract:Objective To investigate the feasibility of low-dose CT scan of the temporal bone combined with reconstruction matrix size of 1 024×1 024 and the effect of the reconstruction matrix size on image quality.Methods Normal-dose and low-dose bilateral temporal bone CT scans were performed on twelve adult male cadaveric skull specimens using the 160-slice multi-detector CT scanning of United Imaging Healthcare. Normal-dose CT images were reconstructed with matrix sizes of 512×512 and 1 024×1 024, while low-dose CT images were reconstructed with the matrix size of 1 024×1 024. CT value, noise, signal-to-noise ratio, contrast-to-noise ratio, the visualization scoring of 15 anatomical structures of the temporal bone, and the result of three-dimensional reconstruction of the ossicular chain were compared among the three groups.Results The radiation dose of low-dose CT scanning was reduced by about 50% compared with that of normal-dose CT. There was no significant difference in CT values of air, soft tissues and bones among the three groups. Low-dose temporal bone CT with the matrix size of 1 024×1 024 had higher noise, but much better visualization of temporal bone structure than the normal-dose temporal bone CT with matrix size of 512×512. Both the three-dimensional reconstructions of normal-dose and low-dose 1 024×1 024 matrix images were satisfactory and showed no significant difference. The morphology, size and relative position of malleus, incus, stapes, cochlea, and labyrinth, as well as the location of the ossicular chain in the cranium were all clearly displayed.Conclusion Low-dose temporal bone CT with the matrix size of 1 024×1 024 can be used to effectively reduce the radiation dose and significantly improve the spatial resolution and the visualization of the temporal bone anatomical structures compared with the normal-dose temporal bone CT with a matrix size of 512×512.
-
Keywords:
- Temporal bone /
- Low dose /
- Computed tomography
-
-
图 1 听骨链的三维重建及其在颅中的定位
Figure 1. Three-dimensional reconstruction of ossicular chain and its localization in the skull
a: Normal-dose CT images with matrix size of 512×512; b: Normal-dose CT images with matrix size of 1 024×1 024; c: Low-dose CT images with matrix size of 1 024×1 024. A: Anterior; P: Posterior; F: Feet; R: Right.
表 1 两组辐射剂量比较(n=12)
Table 1 Radiation dose in two groups (n=12)
Group CTDIVOL/mGy DLP/(mGy·cm) ED/mSv Normal dose 37.71±0.01 973.27±24.39 3.01±0.08 Low dose 18.87±0.01 487.11±12.21 1.51±0.04 t 4691.65 43.648 43.648 P <0.001 <0.001 <0.001 CTDIVOL: Volume CT dose index; DLP: Dose-length product; ED: Effective dose. 表 2 三种重建方式的CT值、噪声、SNR和CNR(n=12)
Table 2 CT value, image noise, SNR and CNR obtained for three reconstruction types (n=12)
Index ND-512 group ND-1024 group LD-1024 group CT value/HU Air −956.4±6.8 −952.6±16.3 −944.9±17.7 Brainstem 42.2±3.7 45.3±6.1 45.4±4.7 Temporal bone 1631.1±135.5 1625.1±125.5 1605.2±141.5 Noise/HU Air 14.1±6.1△△, # 57.5±8.8 72.6±13.9△ Brainstem 10.8±1.2△△, # 68.8±6.9 96.6±12.1△△ Temporal bone 37.9±14.4△△, # 102.2±10.3 129.9±18.4△△ SNR Air 80.4±28.5△△, # 16.9±2.8 13.5±2.7 Brainstem 3.9±0.3△△, # 0.7±0.1 0.5±0.1△ Temporal bone 48.6±17.2△△, # 16.1±2.1 12.6±2.0 CNR 47.3±16.7△△, # 15.6±2.1 12.2±1.9 SNR: Signal-to-noise ratio; CNR: Contrast-to-noise ratio; ND-512: Normal-dose CT with matrix size of 512×512; ND-1024: Normal-dose CT with matrix size of 1 024×1 024; LD-1024: Low-dose CT with matrix size of 1 024×1 024. △P<0.05, △△P<0.001, vs. ND-1024 group; #P<0.001, vs. LD-1024 group. 表 3 解剖结构主观评分比较(n=12)
Table 3 Comparison of subjective scores of anatomical structures (n=12)
Subjective score ND-512 group ND-1024 group LD-1024 group Cochlea 3.1±0.9△△, # 4.1±0.7 4.0±0.6 Spiral osseous lamina 2.9±1.0△△, # 3.9±0.7 3.8±0.6 Modiolus 2.7±0.9△, # 3.6±0.7 3.5.±0.5 Labyrinth 2.8±0.8△△, ## 4.0±0.6 3.9±0.6 Vestibular aqueduct 2.5±0.9△, # 3.5±0.6 3.4±0.5 Cochlear nerve canal 2.3±0.9△△, ## 3.7±0.6 3.6±0.4 Internal auditory canal 3.6±0.5△△, ## 4.7±0.5 4.8±0.4 Facial nerve canal, cochlear segment 3.0±0.9△, ## 3.9±0.8 4.0±0.8 Facial nerve canal, tympanic segment 3.0±0.8△, # 4.0±0.7 3.9±0.8 Facial nerve canal, mastoid segment 3.1±0.7△, # 3.8±0.7 3.7±0.8 Malleus 3.1±0.6△△, ## 4.0±0.7 4.1±0.6 Incus 2.8±0.8△△, # 4.0±0.8 3.8±0.9 Stapes 1.9±0.7△△, ## 3.1±0.7 2.9±0.5 Round window 3.1±0.6△△, # 4.0±0.7 3.9±0.7 Oval window 3.2±0.8△ 3.9±0.8 3.8±0.8 ND-512: Normal-dose CT with matrix size of 512×512; ND-1024: Normal-dose CT with matrix size of 1 024×1 024; LD-1024: Low-dose CT with matrix size of 1 024×1 024. △P<0.05, △△P<0.001, vs. ND-1024 group; #P<0.05, ##P<0.001, vs. LD-1024 group. -
[1] PIRIMOGLU B, SADE R, SAKAT M S, et al. Low-dose non-contrast examination of the temporal bone using volumetric 320-row computed tomography. Acta Radiol,2019,60(7): 908–916. DOI: 10.1177/0284185118802597
[2] PIERGALLINI L, SCOLA E, TUSCANO B, et al. Flat-panel CT versus 128-slice CT in temporal bone imaging: Assessment of image quality and radiation dose. Eur J Radiol,2018,106: 106–113. DOI: 10.1016/j.ejrad.2018.07.013
[3] KIM C R, JEON J Y. Radiation dose and image conspicuity comparison between conventional 120 kVp and 150 kVp with spectral beam shaping for temporal bone CT. Eur J Radiol,2018,102: 68–73. DOI: 10.1016/j.ejrad.2018.03.004
[4] OHARA A, MACHIDA H, SHIGA H, et al. Improved image quality of temporal bone CT with an ultrahigh-resolution CT scanner: Clinical pilot studies. Jpn J Radiol,2020,38(9): 878–883. DOI: 10.1007/s11604-020-00987-5
[5] 江桂莲, 尹红霞, 胡志海, 等. 双源CT不同扫描条件下颞骨图像质量与剂量的定量研究. 中国医学装备,2020,17(4): 12–16. DOI: 10.3969/J.ISSN.1672-8270.2020.04.004 [6] RAJENDRAN K, VOSS B A, ZHOU W, et al. Dose reduction for sinus and temporal bone imaging using photon-counting detector CT with an additional tin filter. Invest Radiol,2020,55(2): 91–100. DOI: 10.1097/RLI.0000000000000614
[7] POON R, BADAWY M K. Radiation dose and risk to the lens of the eye during CT examinations of the brain. J Med Imaging Radiat Oncol,2019,63(6): 786–794. DOI: 10.1111/1754-9485.12950
[8] HADERLEIN M, SPEER S, OTT O, et al. Dose reduction to the swallowing apparatus and the salivary glands by de-intensification of postoperative radiotherapy in patients with head and neck cancer: First (treatment planning) results of the prospective multicenter DIREKHT trial. Cancers,2020,12(3): 538[2020-10-09]. https://doi.org/10.3390/cancers12030538.
[9] EULER A, MARTINI K, BAESSLER B, et al. 1024-pixel image matrix for chest CT—Impact on image quality of bronchial structures in phantoms and patients. PLoS One,2020,15(6): e0234644[2020-10-09]. https://doi.org/10.1371/journal.pone.0234644.
[10] MATSUKIYO R, OHNO Y, MATSUYAMA T, et al. Deep learning-based and hybrid-type iterative reconstructions for CT: Comparison of capability for quantitative and qualitative image quality improvements and small vessel evaluation at dynamic CE-abdominal CT with ultra-high and standard resolutions. Jpn J Radiol,2021,39(2): 186–197. DOI: 10.1007/s11604-020-01045-w
[11] BARTLETT D J, KOO C W, BARTHOLMAI B J, et al. High-resolution chest computed tomography imaging of the lungs: Impact of 1024 matrix reconstruction and photon-counting detector computed tomography. Invest Radiol,2019,54(3): 129–137. DOI: 10.1097/RLI.0000000000000524
[12] 郑慧, 李玉华, 李惠民, 等. 低剂量CT扫描结合迭代算法重建行颞骨成像. 放射学实践,2014,29(6): 644–646. DOI: 10.13609/j.cnki.1000-0313.2014.06.016 [13] 关丽明, 李祥胜, 李松柏, 等. 颞骨64排CT低剂量扫描及不同重建函数对图像质量的影响. 中国医科大学学报,2011,40(2): 149–152. [14] CHEN G H, ZAMBELLI J, LI K, et al. Scaling law for noise variance and spatial resolution in differential phase contrast computed tomography. Med Phys,2011,38(2): 584–588. DOI: 10.1118/1.3533718
[15] OGURA A, HAYAKAWA K, MIYATI T, et al. Improvement on detectability of early ischemic changes for acute stroke using nonenhanced computed tomography: Effect of matrix size. Eur J Radiol,2010,76(2): 162–166. DOI: 10.1016/j.ejrad.2009.06.013
[16] HATA A, YANAGAWA M, HONDA O, et al. Effect of matrix size on the image quality of ultra-high-resolution CT of the lung: Comparison of 512 ×512, 1024× 1024, and 2048× 2048. Acad Radiol,2018,25(7): 869–876. DOI: 10.1016/j.acra.2017.11.017
-
期刊类型引用(11)
1. 刘永芳,周莉,刘晖扬,黄睿,丰志滢,尹甜甜. NLRP3炎症小体在IgA肾病中的作用及中药干预进展. 中国实验方剂学杂志. 2024(06): 269-279 . 百度学术
2. 汪容,沈沛成,何立群,吴卿. 探讨固本通络方基于细菌脂多糖介导的肠B细胞激活对Gd-IgA1的影响. 辽宁中医药大学学报. 2024(02): 47-53+221 . 百度学术
3. 郭婷,黄文龙,丁樱,宋纯东,徐炎,高雅婵. 中医药调节IgA肾病免疫功能紊乱的研究. 中国中医基础医学杂志. 2024(03): 552-555 . 百度学术
4. 吴卿,杨晓龙,周维娜,严嘉伟,何立群,沈沛成. 固本通络方对Ig A肾病小鼠炎症反应、氧化应激和TGF-β1/Smads信号通路的影响. 现代生物医学进展. 2023(03): 407-411+427 . 百度学术
5. 李仁武,李思,申正日. 益气滋肾汤对气阴两虚型IgA肾病患者临床症状、体征及肾功能稳定的影响. 辽宁中医杂志. 2021(03): 71-74 . 百度学术
6. 刘建新,唐鑫,徐向宇,张文丽,滕健,仇萍,刘良,周华. 实验性IgA肾病动物模型的研究进展. 中药新药与临床药理. 2019(02): 257-263 . 百度学术
7. 任荣,莫颖,张静,张艳. 血、尿Smad2和TGF-β1与IgA肾病尿蛋白及内生肌酐清除率之间关系的研究. 标记免疫分析与临床. 2019(05): 795-798 . 百度学术
8. 李林,李屹. 从络病论治慢性肾病蛋白尿理论基础及研究进展. 辽宁中医药大学学报. 2017(07): 101-104 . 百度学术
9. 王娴娴,梁婷玉,吴卿,黄迪,姜健,沈沛成. 固本通络方基于肠肾关联治疗小鼠IgA肾病的实验研究. 上海中医药杂志. 2017(S1): 146-150 . 百度学术
10. 赵明明,李刘生,于子凯,张昱. IgA肾病中医药的实验研究. 世界中医药. 2017(11): 2842-2846 . 百度学术
11. 刘可先,张可训,李红,樊平. 加味当归补血汤对肾虚血瘀型IgA肾病的疗效与对免疫功能的影响. 世界中医药. 2017(12): 2923-2926+2930 . 百度学术
其他类型引用(1)