欢迎来到《四川大学学报(医学版)》 2025年6月9日 星期一

尿液中12种全氟化合物的固相萃取-超高效液相色谱串联四极杆线性离子阱质谱分析方法研究

罗新月, 赵璇, 任琳, 王文佳, 雍莉, 袁悦, 曾红燕, 邹晓莉

罗新月, 赵璇, 任琳, 等. 尿液中12种全氟化合物的固相萃取-超高效液相色谱串联四极杆线性离子阱质谱分析方法研究[J]. 四川大学学报(医学版), 2021, 52(4): 679-685. DOI: 10.12182/20210760504
引用本文: 罗新月, 赵璇, 任琳, 等. 尿液中12种全氟化合物的固相萃取-超高效液相色谱串联四极杆线性离子阱质谱分析方法研究[J]. 四川大学学报(医学版), 2021, 52(4): 679-685. DOI: 10.12182/20210760504
LUO Xin-yue, ZHAO Xuan, REN Lin, et al. Study on the Analytical Method of Solid Phase Extraction-Ultra Performance Liquid Chromatography Tandem Quadrupole Linear Ion Trap Mass Spectrometry for 12 Perfluorinated Compounds in Human Urine[J]. Journal of Sichuan University (Medical Sciences), 2021, 52(4): 679-685. DOI: 10.12182/20210760504
Citation: LUO Xin-yue, ZHAO Xuan, REN Lin, et al. Study on the Analytical Method of Solid Phase Extraction-Ultra Performance Liquid Chromatography Tandem Quadrupole Linear Ion Trap Mass Spectrometry for 12 Perfluorinated Compounds in Human Urine[J]. Journal of Sichuan University (Medical Sciences), 2021, 52(4): 679-685. DOI: 10.12182/20210760504

栏目: 新技术新方法

尿液中12种全氟化合物的固相萃取-超高效液相色谱串联四极杆线性离子阱质谱分析方法研究

基金项目: 国家重点研发计划项目(No. 2017YFC1600200)和四川省科技厅重点研发项目(No. 2020YFS0056)资助
详细信息
    通讯作者:

    邹晓莉: E-mail:zouxl_1113@163.com

Study on the Analytical Method of Solid Phase Extraction-Ultra Performance Liquid Chromatography Tandem Quadrupole Linear Ion Trap Mass Spectrometry for 12 Perfluorinated Compounds in Human Urine

More Information
  • 摘要:
      目的  建立超高效液相色谱串联四极杆线性离子阱质谱同时测定尿液中12种全氟化合物(PFCs)的方法。
      方法  尿样经2%甲酸调节pH后,用WAX柱萃取净化浓缩,收集洗脱液氮吹,10 mmol/L乙酸铵-甲醇(VV=70∶30)复溶,离心取上清液进样分析。超高效液相色谱采用甲醇和10 mmol/L乙酸铵水溶液在C18柱上梯度洗脱进行分离,质谱采用多反应监测,内标法定量。
      结果  方法在线性范围内线性良好,检出限和定量限分别为0.032~6.5 ng/L和0.10~21 ng/L。12种PFCs的加标回收率为91.5%~114%,日内精密度和日间精密度分别为0.57%~16.0%和1.88%~20.1%。将建立的方法应用于某地小学生尿液的测定,可检出9种PFCs,其中全氟丁烷磺酸和全氟辛酸为当地学生尿样的主要组成部分。
      结论  建立的方法可同时测定尿液中12种全氟化合物,方法结合固相萃取和同位素内标校正,得到了良好的灵敏度和准确度。

     

    Abstract:
      Objective  To establish a method for simultaneous determination of 12 kinds of perfluorinated compounds (PFCs) in human urine based on ultra performance liquid chromatography tandem quadrupole linear ion trap mass spectrometry (UPLC-QTtrap-MS).
      Methods  After pH adjustment with 2% formic acid, the urine samples were loaded on a WAX solid phase extraction (SPE) cartridge for extraction, purification and concentration. The eluates were collected, concentrated to dryness under nitrogen, and reconstituted with 10 mmol/L ammonium acetate aqueous solution-methanol (VwaterVmethanol = 70∶30) before injection. UPLC was performed on a C18 cartridge, and methanol and 10 mmol/L ammonium acetate aqueous solution was used as mobile phases with gradient elution. QTtrap-MS was operated in multiple reaction monitoring (MRM) mode, and the internal standard calibration curves were applied for quantitative analysis.
      Results  Good linearity was obtained in the linear range, with the method detection limits and method quantification limits being 0.032 ng/L-6.5 ng/L and 0.10 ng/L-21 ng/L, respectively, for the 12 kinds of PFCs. The spiked recoveries of the 12 kinds of PFCs were 91.5%-114%, with the intra-day precision and the inter-day precision being 0.57%-16.0% and 1.88%-20.1%, respectively. The established method was applied to the determination of 12 kinds of PFCs in the urine samples of primary school students collected in one area. Nine kinds of PFCs were detected in the urine samples in this area. Among the PFCs detected, perfluorobutanesulfonic acid (PFBS) and perfluorooctanoic acid (PFOA) were the main PFCs found in the student urine samples.
      Conclusion  The method established in this study could be used to simultaneously examine 12 kinds of PFCs in urine. The method combined SPE with isotope internal standard correction and achieved good sensitivity and accuracy.

     

  • 全氟化合物(perfluorinated compounds, PFCs)是一类由氟原子将烷烃分子链上的氢原子全部取代或部分取代而形成的碳氟化合物。大量研究发现PFCs通过饮食[1]、饮用水[2]和呼吸[3]等方式进入人体后,会对人体多种脏器[4]和系统[5]产生毒性作用,并与高胆固醇血症、糖尿病等慢性传染性疾病[6]和肺癌、胰腺癌等癌症[7]相关。

    PFCs进入人体后,大部分在血液中与血清蛋白结合[8],最后通过头发、指甲、尿液及粪便以原型排出体外[9]。目前,血中PFCs含量是最常用的PFCs生物暴露学指标,亦有研究证明尿液、指甲和头发中PFCs含量也可作为PFCs生物暴露学指标[10-11]。在人群暴露评估研究中,尿液采样无创且可大量获得而被广泛采用,基于PFCs分布的广泛性、环境污染日渐严重及其多系统毒性,需要对其暴露风险等进行研究,因此建立一种测定尿液中常见PFCs的测定方法十分必要。

    气相色谱法(gas chromatography, GC)[12]、气相色谱串联质谱法(gas chromatography-mass spectrometry, GC-MS)[13]、高效液相色谱(high performance liquid chromatography, HPLC)[14]和高效液相色谱串联质谱法(high performance liquid chromatography-tandem mass spectrometry, HPLC-MS/MS)[15]均有用于PFCs的分析。大部分PFCs为热稳定物质,沸点较高,且PFCs既无紫外吸收,又无法产生荧光,需衍生化后方能用GC-MS、GC或HPLC进行测定,且GC或HPLC方法灵敏度亦不高,无法满足低含量PFCs的尿样分析;HPLC-MS/MS配合净化能力较强的前处理手段以克服基质效应带来的影响,可充分发挥其高灵敏度、高选择性的优势,因而成为了PFCs分析最常用的技术。其中超高效液相色谱串联四极杆线性离子阱(ultra performance liquid chromatography tandem quadrupole linear ion trap, UPLC-QTrap)兼具四极杆和线性离子阱的定量定性能力,在PFCs的分析中占据一席之地。

    普通人群接触PFCs的剂量相对较低,即使存在生物富集作用,但尿中PFCs的含量往往亦在ng/L级[16]。此外,样品基质对质谱测定通常有较大的影响,因此测定PFCs时,净化和富集是必须的。目前净化富集尿液中PFCs的常用方法主要是液液萃取[17]、液液微萃取[18]、固相萃取(solid phase extraction, SPE)[19]及固相微萃取[13]。SPE萃取效率稳定、柱填料种类繁多、对环境友好,被广泛应用于PFCs样品前处理。因此本实验拟建立同时检测尿液中12种常见PFCs的SPE-UPLC-QTrap方法,以期获得良好的方法指标。

    超高效液相色谱仪(ACQUITY UPLC H-Class Plus, Waters,美国),仪器所用管路均更换为聚醚醚酮材质(除进样器和六通阀部分);质谱仪(QTrap 3200, AB SCIEX,美国)。

    12种PFCs标准溶液包括全氟丁酸(perfluorobutyric acid, PFBA)、全氟戊酸(perfluoropentanoic acid, PFPeA)、全氟己酸(perfluorohexanoic acid, PFHxA)、全氟庚酸(perfluoroheptanoic acid, PFHpA)、全氟辛酸(perfluorooctanoic acid, PFOA)、全氟壬酸(perfluorononanoic acid, PFNA)、全氟癸酸(perfluorodecanoic acid, PFDA)、全氟丁烷磺酸(perfluorobutanesulfonate acid, PFBS)、全氟己烷磺酸(perfluorohexanesulfonate acid, PFHxS)、全氟庚烷磺酸(perfluoroheptanesulfonate acid, PFHpS)、全氟辛烷磺酸(perfluorooctanesulfonic acid, PFOS)、全氟癸烷磺酸(perfluorodecanesulfonate acid, PFDS)和7种PFCs内标储备液包括13C4-PFBA、13C2-PFHxA、13C4-PFOA、13C4-PFNA、13C4-PFDA、13C4-PFHxS、13C4-PFOS(50 μg/mL,加拿大Wellington公司)。上述标准溶液使用时,从原装玻璃瓶中转移至聚丙烯(polypropylene, PP)瓶中,避光保存于−80 ℃冰箱中。

    甲醇、乙腈(LC-MS级,美国Thermo Fisher Scientific公司);甲酸、甲酸铵、乙酸铵(LC-MS级,美国Sigma-Aldrich公司);氨水(ACS级,美国Honeywell公司);其余试剂均为HPLC级,购自天津市科密欧化学试剂有限公司;实验用水为超纯水,电阻率为18.25 MΩ·cm。

    参照文献[10]用50 mL聚丙烯离心管采集40份小学生晨尿并保存于−80 ℃冰箱中。

    实验采用电喷雾离子源(ESI)负离子模式,多反应监测模式检测,参数见表1

    表  1  待测物的MRM模式参数表
    Table  1.  Optimal multiple reaction monitoring (MRM) parameters for the determination of targeted analytes
    AnalytesPrecursor ion (m/z)Product ion (m/z)Declustering potential/VCollision energy/eV
    PFBA 213 169* −10 −13
    97 −10 −25
    13C4−PFBA 217 172* −10 −13
    97 −10 −25
    PFBS 299 80* −50 −56
    99 −50 −43
    PFPeA 263 219* −13 −15
    69 −13 −55
    PFHxA 313 269* −40 −50
    119 −15 −26
    13C2−PFHxA 315 270* −40 −50
    119 −10 −15
    PFHxS 399 80* −65 −70
    99 −69 −52
    13C4-PFHxS 403 80* −65 −70
    103 −69 −52
    PFHpA 363 319* −12 −10
    169 −10 −24
    PFHpS 448.7 80* −70 −65
    98.9 −70 −57
    PFOA 413 369* −15 −18
    169 −11 −23
    13C4-PFOA 417 372* −12 −18
    172 −12 −25
    PFOS 499 80* −70 −80
    99 −70 −58
    13C4−PFOS 503 80* −70 −80
    99 −70 −58
    PFNA 463 419* −11 −20
    169 −11 −27
    13C4−PFNA 468 423* −11 −20
    169 −11 −27
    PFDA 513 469* −13 −20
    169 −13 −29
    13C4−PFDA 515 470* −13 −20
    169 −13 −29
    PFDS 599 80* −90 −80
    99 −90 −76
     *The quantitative ion. PFCs was quantified by internal standards as follows: PFBA−13C4-PFBA; PFBS−13C4-PFOS; PFPeA−13C2-PFHxA; PFHxA−13C2-PFHxA; PFHxS−13C4-PFHxS; PFHpA−13C2-PFHxA; PFHpS−13C4-PFOS; PFOA−13C4-PFOA; PFOS−13C4-PFOS; PFNA−13C4-PFNA; PFDA−13C4−PFDA; PFDS−13C4-PFHxS.
    下载: 导出CSV 
    | 显示表格

    ACQUITY UPLC ® BEH C18色谱柱(50 mm×3.0 mm, 1.7 µm);流动相A相为10 mmol/L乙酸铵,流动相B相为甲醇,梯度洗脱:0~0.5 min保持B相25%,0.5~10 min B相升至85%,10~10.5 min B相继续升至95%,10.5~14 min保持B相比例为95%,14~14.1 min B相降至25%,14.1~16 min保持B相比例为25%;流速0.3 mL/min;进样量10 µL;柱温30 ℃;样品室温度10 ℃。测定时间为16 min。

    以体积比为30∶70的甲醇和10 mmol/L乙酸铵水溶液为溶剂稀释PFCs标准溶液和内标溶液得到质量浓度为0、0.1、0.5、1.0、5.0、10、20、50和100 μg/L的12种PFCs系列标准溶液(7种PFCs内标溶液质量浓度均为10 μg/L),按照1.3.1及1.3.2的色谱质谱条件检测。以待测物质量浓度为横坐标,待测物与同位素内标峰面积比值为纵坐标,绘制内标标准曲线。

    尿样恢复至室温后混匀,取10 mL尿样,加入100 μg/L混合内标溶液10 μL和2%甲酸1 mL,混匀,超声30 min,以5 000 r/min速度离心10 min。WAX(6 mL, 150 mg)柱依次用4.0 mL 0.2%氨化甲醇、甲醇和超纯水活化平衡;上尿样,流出速度约1滴/s(下同);用4.0 mL 2%甲酸和4.0 mL甲醇依次淋洗,1.0 mL 0.1%氨化甲醇洗脱,收集洗脱液氮吹,100 μL 10 mmol/L乙酸铵-甲醇(VV甲醇=70∶30)复溶,12 000 r/min离心10 min,取上清液进样分析。

    PFCs为强酸型化合物,在ESI中容易形成[M-H],因此本研究采用负离子模式,经仪器自动优化后的MRM条件见表1

    基于文献[10, 20],实验以甲醇为有机相,考察了水相中乙酸铵浓度。发现当水相中乙酸铵浓度为0 mmol/L时,各PFCs峰形较好,响应相对最高,但PFBA几乎无保留;当乙酸铵浓度在1~50 mmol/L之间时,各PFCs峰形较好,PFBA保留良好,但乙酸铵的加入,会使PFCs的响应有不同程度的下降。对实际尿样测定发现部分PFCs如PFBA、PFPeA、PFBS和PFHxA受基质影响较大,其保留时间相比标准溶液的出峰会提前,差值大于5%。实验通过提高流动相水相中乙酸铵浓度以降低尿液基质对PFCs保留时间的影响,最终选定以甲醇和10 mmol/L乙酸铵进行色谱分离。在优化色谱质谱条件下得到的PFCs及其内标溶液总离子色谱图见图1

    图  1  PFCs混合标准色谱图
    Figure  1.  The chromatogram of the mixed standard solution
    1: PFBA, 13C4-PFBA; 2: PFPeA; 3: PFBS; 4: PFHxA, 13C2-PFHxA; 5: PFHpA; 6: PFHxS, 13C4-PFHxS; 7: PFHpS, PFOA, 13C4-PFOA; 8: PFNA, 13C4-PFNA, PFOS, 13C4-PFOS; 9: PFDA, 13C4-PFDA; 10: PFDS.

    实验采用加标(100 ng/L)的混合尿样进行SPE条件优化,以PFCs的加标回收率为评价指标。

    实验比较了WAX(6 mL, 150 mg)、HLB(6 mL, 200 mg)和PRiME HLB(6 mL, 200 mg)3种SPE柱对尿样中PFCs的萃取效率(图2)。相比较HLB和PRiME HLB柱,WAX柱对12种PFCs都有良好的萃取效果(图2A)且能够一定程度减弱基质效应(图2B),因此实验选择WAX固相萃取柱(6 mL, 150 mg)进行尿样的前处理。

    图  2  三种固相萃取柱对尿样中PFCs的萃取效率
    Figure  2.  The extraction efficiency of three kinds of solid phase extraction (SPE) cartridges for PFCs in urine samples
    A: The recoveries of PFCs with three SPE cartridges; B: Urinary matrix effect with three SPE cartridges.

    WAX柱通常在碱性条件下活化,实验对体积分数0%~0.5%氨水进行了优化。发现随着氨水体积分数增加,PFCs的加标回收率亦增加,直至氨水体积分数增加至0.1%及以上,PFCs的加标回收率达到最高并平稳。实验最终选择4.0 mL 0.2%氨化甲醇、甲醇和超纯水依次对WAX固相萃取柱进行活化平衡。

    实验对比体积分数2%甲酸、甲醇、2%甲酸和甲醇3种淋洗剂效果。结果表明,用2%甲酸和甲醇依次淋洗后PFCs的加标回收率为62.3%~l73.1%,比单独使用2%甲酸或甲醇淋洗后PFCs的加标回收率(分别为2.56%~41.5%和12.4%~59.7%)更高,因此实验选择用4.0 mL 2%甲酸和4.0 mL甲醇依次进行淋洗。

    实验比较了0.1%氨化甲醇(VV)、0.1%氨化乙腈(VV)、0.1%氨化乙醇(VV)、0.1%氨化异丙醇(VV)、0.1%氨化丙酮(VV)对PFCs洗脱效果,实验结果见图3。使用0.1%氨化甲醇(VV)洗脱后各PFCs加标回收率最高,同时对氨化甲醇中氨水的体积分数以及氨化甲醇的用量进行了优化,实验结果如图4所示。随着氨水体积分数增加,PFCs的加标回收率增加,当氨水的体积分数增加至0.1%时,部分PFCs的加标回收率保持稳定,但大部分PFCs的加标回收率有不同程度下降。实验过程中观察到随着氨水体积分数的增加,洗脱液的颜色越深,所以回收率下降的原因可能是随着氨水体积分数的增加,与PFCs共洗脱杂质也随之增加,导致样液中的基质效应增强。随着0.1%氨化甲醇使用体积的增加,PFCs的加标回收率也有类似的变化趋势。综合考虑基质效应、试剂使用量及氮吹时操作的可行性,实验最终选择1.0 mL 0.1%氨化甲醇作为洗脱液。

    图  3  洗脱液种类对尿液中PFCs洗脱效率的影响
    Figure  3.  The effect of different elution solvents on PFCs elution efficiency
    图  4  洗脱液体积对尿液中PFCs洗脱效率的影响
    Figure  4.  Effect of eluent volume on elution efficiency of PFCs in urine
    A: The selection of the volume of 0.1% amonium methanol; B: The selection of the percentage of ammonia in methanol.

    实验对上样尿液的pH值进行了优化。分别使用甲酸和氨水调节尿样的pH值,使尿样的pH值分别为2、4、7、8和10。当上样液pH<3时,PFCs的加标回收率为61.8%~74.4%,当上样液pH>3时,大部分PFCs的加标回收率降至50%以下,故实验选择在10 mL尿样中加入1.0 mL 2%甲酸调节其pH<3后再上样萃取。

    有研究表明[21],PFCs可被玻璃容器吸附造成损失。实验取出80 μL 10 μg/L PFCs标准溶液,氮吹至干,80 μL 10 mmol/L乙酸铵-甲醇(VV甲醇=70∶30)复溶,离心取上清液进样分析;其余的标准溶液分别装于玻璃和PP材质小瓶,密封保存于−20 ℃冰箱中;隔一定时间按上述步骤重复。同时设立试剂空白。结果表明,PFCs标准溶液保存在PP离心管中可一直稳定存在;保存在玻璃小瓶中PFCs的质量浓度会持续缓慢下降,保存1个月后,其质量浓度可下降为原来的1/10。因此,选择PP材质器皿进行实验。

    按1.3.3配制系列标准溶液并进样分析,绘制内标标准曲线,以3倍和10倍信噪比计算方法检出限(method detection limit, MDLs)和方法定量限(method quantification limits, MQLs)。12种PFCs在0.050(0.50,PFBA和PFPeA)~100 μg/L浓度范围内线性良好,线性相关系数r均大于0.997,MDLs及MQLs分别为0.032~6.5 ng/L和0.10~21 ng/L。

    取空白尿样10份混合均匀,分别加标,于同一天内重复测6次并连续测6 d,计算PFCs加标回收率及其相对标准偏差(relative standard deviations, RSDs)用以评价方法的日内和日间精密度。PFCs的加标回收率为91.5%~114%,日内和日间精密度值分别为0.57%~16.0%和1.88%~20.1%(表2)。

    表  2  PFCs加标回收率(n=6)
    Table  2.  The spiked recoveries of PFCs (n=6)
    CompoundSpiked value/(ng/L)Determining value/(ng/L)Recovery /%Intra-day precision
    /%
    Inter-day precision
    /%
    PFBA 25.0 24.3 97.2 10.4 16.0
    50.0 51.7 103 6.29 7.72
    100 104 104 3.24 5.83
    PFBS 2.00 2.25 113 16.0 20.1
    4.00 4.33 108 6.68 8.42
    8.00 7.26 90.8 4.41 5.10
    PFPeA 25.0 25.2 101 10.3 12.0
    50.0 51.3 103 7.32 9.11
    100 96.4 96.4 5.76 6.80
    PFHxA 0.10 0.114 114 9.03 19.8
    0.20 0.187 93.5 2.99 10.7
    0.40 0.389 97.3 1.75 5.33
    PFHxS 1.00 1.13 113 10.7 13.1
    2.00 2.12 106 6.80 8.03
    4.00 3.69 92.3 2.31 2.93
    PFHpA 1.00 1.19 119 10.6 14.4
    2.00 1.83 91.5 6.25 9.91
    4.00 4.06 102 1.19 5.41
    PFHpS 1.00 0.926 92.6 10.4 19.7
    2.00 1.89 94.5 4.79 11.1
    4.00 4.16 104 1.86 6.71
    PFOA 1.00 1.15 115 10.7 20.1
    2.00 2.06 103 8.21 12.2
    4.00 3.68 92.1 2.50 6.64
    PFOS 1.00 0.932 93.2 10.8 13.3
    2.00 2.23 112 6.55 9.54
    4.00 4.16 104 4.23 6.34
    PFNA 2.00 2.06 103 8.68 9.49
    4.00 4.24 106 4.86 6.78
    8.00 7.65 95.7 3.96 5.12
    PFDA 1.00 0.923 92.3 9.43 14.5
    2.00 1.85 92.5 4.50 6.79
    4.00 4.26 106 0.57 5.01
    PFDS 1.00 1.14 114 5.25 6.97
    2.00 2.06 103 2.21 3.64
    4.00 3.83 95.6 0.82 1.88
    下载: 导出CSV 
    | 显示表格

    实验通过比较溶剂配制和处理好的样液配制的标准曲线斜率来评价尿样基质效应,各PFCs的斜率比为0.696~0.898,通过加入同位素内标进行校正,可以进一步降低尿样的基质效应,各PFCs的斜率比为0.861~1.16。

    利用本研究建立的方法对所采集的尿样进行测定,总PFCs的质量浓度为4.76~128.4 ng/L,平均质量浓度为8.59 ng/L,具体结果见表3。PFBS和PFOA的平均质量浓度最高,分别为7.38 ng/L和2.69 ng/L。将尿样检测结果与相关研究[9-10, 22]进行比较,发现该地区人群尿样中PFCs含量相对较低,提示当地人群暴露于PFCs的风险较小。

    表  3  某地学校小学生尿样中各PFCs的质量浓度范围(n=40)
    Table  3.  The range of PFCs in urine samples of primary school students from one area (n=40)
    PFCsRange/(ng/L)Average/(ng/L)Median/(ng/L)
    PFBS ND-92.3 7.38 4.31
    PFHxA ND-13.1 0.728 <0.201*
    PFHxS ND-16.7 2.11 <1.52*
    PFHpA ND-29.2 2.56 <2.09*
    PFHpS ND-33.6 2.27 <1.90*
    PFOA ND-24.5 2.69 <1.38*
    PFOS ND-10.2 1.38 1.22
    PFNA ND-7.76 1.99 <2.28*
    PFDA ND-7.81 1.71 <1.42*
     ND: Not detected; * Lower than MDL.
    下载: 导出CSV 
    | 显示表格

    *    *    *

    利益冲突 所有作者均声明不存在利益冲突

  • 图  1   PFCs混合标准色谱图

    Figure  1.   The chromatogram of the mixed standard solution

    1: PFBA, 13C4-PFBA; 2: PFPeA; 3: PFBS; 4: PFHxA, 13C2-PFHxA; 5: PFHpA; 6: PFHxS, 13C4-PFHxS; 7: PFHpS, PFOA, 13C4-PFOA; 8: PFNA, 13C4-PFNA, PFOS, 13C4-PFOS; 9: PFDA, 13C4-PFDA; 10: PFDS.

    图  2   三种固相萃取柱对尿样中PFCs的萃取效率

    Figure  2.   The extraction efficiency of three kinds of solid phase extraction (SPE) cartridges for PFCs in urine samples

    A: The recoveries of PFCs with three SPE cartridges; B: Urinary matrix effect with three SPE cartridges.

    图  3   洗脱液种类对尿液中PFCs洗脱效率的影响

    Figure  3.   The effect of different elution solvents on PFCs elution efficiency

    图  4   洗脱液体积对尿液中PFCs洗脱效率的影响

    Figure  4.   Effect of eluent volume on elution efficiency of PFCs in urine

    A: The selection of the volume of 0.1% amonium methanol; B: The selection of the percentage of ammonia in methanol.

    表  1   待测物的MRM模式参数表

    Table  1   Optimal multiple reaction monitoring (MRM) parameters for the determination of targeted analytes

    AnalytesPrecursor ion (m/z)Product ion (m/z)Declustering potential/VCollision energy/eV
    PFBA 213 169* −10 −13
    97 −10 −25
    13C4−PFBA 217 172* −10 −13
    97 −10 −25
    PFBS 299 80* −50 −56
    99 −50 −43
    PFPeA 263 219* −13 −15
    69 −13 −55
    PFHxA 313 269* −40 −50
    119 −15 −26
    13C2−PFHxA 315 270* −40 −50
    119 −10 −15
    PFHxS 399 80* −65 −70
    99 −69 −52
    13C4-PFHxS 403 80* −65 −70
    103 −69 −52
    PFHpA 363 319* −12 −10
    169 −10 −24
    PFHpS 448.7 80* −70 −65
    98.9 −70 −57
    PFOA 413 369* −15 −18
    169 −11 −23
    13C4-PFOA 417 372* −12 −18
    172 −12 −25
    PFOS 499 80* −70 −80
    99 −70 −58
    13C4−PFOS 503 80* −70 −80
    99 −70 −58
    PFNA 463 419* −11 −20
    169 −11 −27
    13C4−PFNA 468 423* −11 −20
    169 −11 −27
    PFDA 513 469* −13 −20
    169 −13 −29
    13C4−PFDA 515 470* −13 −20
    169 −13 −29
    PFDS 599 80* −90 −80
    99 −90 −76
     *The quantitative ion. PFCs was quantified by internal standards as follows: PFBA−13C4-PFBA; PFBS−13C4-PFOS; PFPeA−13C2-PFHxA; PFHxA−13C2-PFHxA; PFHxS−13C4-PFHxS; PFHpA−13C2-PFHxA; PFHpS−13C4-PFOS; PFOA−13C4-PFOA; PFOS−13C4-PFOS; PFNA−13C4-PFNA; PFDA−13C4−PFDA; PFDS−13C4-PFHxS.
    下载: 导出CSV

    表  2   PFCs加标回收率(n=6)

    Table  2   The spiked recoveries of PFCs (n=6)

    CompoundSpiked value/(ng/L)Determining value/(ng/L)Recovery /%Intra-day precision
    /%
    Inter-day precision
    /%
    PFBA 25.0 24.3 97.2 10.4 16.0
    50.0 51.7 103 6.29 7.72
    100 104 104 3.24 5.83
    PFBS 2.00 2.25 113 16.0 20.1
    4.00 4.33 108 6.68 8.42
    8.00 7.26 90.8 4.41 5.10
    PFPeA 25.0 25.2 101 10.3 12.0
    50.0 51.3 103 7.32 9.11
    100 96.4 96.4 5.76 6.80
    PFHxA 0.10 0.114 114 9.03 19.8
    0.20 0.187 93.5 2.99 10.7
    0.40 0.389 97.3 1.75 5.33
    PFHxS 1.00 1.13 113 10.7 13.1
    2.00 2.12 106 6.80 8.03
    4.00 3.69 92.3 2.31 2.93
    PFHpA 1.00 1.19 119 10.6 14.4
    2.00 1.83 91.5 6.25 9.91
    4.00 4.06 102 1.19 5.41
    PFHpS 1.00 0.926 92.6 10.4 19.7
    2.00 1.89 94.5 4.79 11.1
    4.00 4.16 104 1.86 6.71
    PFOA 1.00 1.15 115 10.7 20.1
    2.00 2.06 103 8.21 12.2
    4.00 3.68 92.1 2.50 6.64
    PFOS 1.00 0.932 93.2 10.8 13.3
    2.00 2.23 112 6.55 9.54
    4.00 4.16 104 4.23 6.34
    PFNA 2.00 2.06 103 8.68 9.49
    4.00 4.24 106 4.86 6.78
    8.00 7.65 95.7 3.96 5.12
    PFDA 1.00 0.923 92.3 9.43 14.5
    2.00 1.85 92.5 4.50 6.79
    4.00 4.26 106 0.57 5.01
    PFDS 1.00 1.14 114 5.25 6.97
    2.00 2.06 103 2.21 3.64
    4.00 3.83 95.6 0.82 1.88
    下载: 导出CSV

    表  3   某地学校小学生尿样中各PFCs的质量浓度范围(n=40)

    Table  3   The range of PFCs in urine samples of primary school students from one area (n=40)

    PFCsRange/(ng/L)Average/(ng/L)Median/(ng/L)
    PFBS ND-92.3 7.38 4.31
    PFHxA ND-13.1 0.728 <0.201*
    PFHxS ND-16.7 2.11 <1.52*
    PFHpA ND-29.2 2.56 <2.09*
    PFHpS ND-33.6 2.27 <1.90*
    PFOA ND-24.5 2.69 <1.38*
    PFOS ND-10.2 1.38 1.22
    PFNA ND-7.76 1.99 <2.28*
    PFDA ND-7.81 1.71 <1.42*
     ND: Not detected; * Lower than MDL.
    下载: 导出CSV
  • [1]

    KIM D H, LEE J H, OH J E. Assessment of individual-based perfluoroalkly substances exposure by multiple human exposure sources. J Hazard Mater,2019,365: 26–33. DOI: 10.1016/j.jhazmat.2018.10.066

    [2]

    VESTERGREN R, BERGER U, GLYNN A, et al. Dietary exposure to perfluoroalkyl acids for the Swedish population in 1999, 2005 and 2010. Environ Int,2012,49: 120–127. DOI: 10.1016/j.envint.2012.08.016

    [3]

    EGEGHY P P, LORBER M. An assessment of the exposure of Americans to perfluorooctane sulfonate: A comparison of estimated intake with values inferred from NHANES data. J Expo Sci Environ Epidemiol,2011,21(2): 150–168. DOI: 10.1038/jes.2009.73

    [4]

    STANIFER J W, STAPLETON H M, SOUMA T, et al. Perfluorinated chemicals as emerging environmental threats to kidney health a scoping review. Clin J Am Soc Nephrol,2018,13(10): 1479–1492. DOI: 10.2215/CJN.04670418

    [5]

    KIM S J, SHIN H, LEE Y B, et al. Sex-specific risk assessment of PFHxS using a physiologically based pharmacokinetic model. Arch Toxicol,2018,92(3): 1113–1131. DOI: 10.1007/s00204-017-2116-5

    [6]

    STEENLAND K, ZHAO L, WINQUIST A, et al. Ulcerative colitis and perfluorooctanoic acid (PFOA) in a highly exposed population of community residents and workers in the mid-ohio valley. Environ Health Perspect,2013,121(8): 900–905. DOI: 10.1289/ehp.1206449

    [7]

    DONG T, PENG Y, ZHONG N, et al. Perfluorodecanoic acid (PFDA) promotes gastric cell proliferation via sPLA2-IIA. Oncotarget,2017,8(31): 50911–50920. DOI: 10.18632/oncotarget.17284

    [8]

    POST G B, COHN P D, COOPER K R. Perfluorooctanoic acid (PFOA), an emerging drinking water contaminant: A critical review of recent literature. Environ Res,2012,116: 93–117. DOI: 10.1016/j.envres.2012.03.007

    [9]

    LIJ, GUO F, WANG Y, et al. Can nail, hair and urine be used for biomonitoring of human exposure to perfluorooctane sulfonate and perfluorooctanoic acid? Environ Int,2013,53: 47–52. DOI: 10.1016/j.envint.2012.12.002

    [10]

    KIM D H, LEE J H, OH J E. Perfluoroalkyl acids in paired serum, urine, and hair samples: Correlations with demographic factors and dietary habits. Environmental Pollution,2019,248: 175–182. DOI: 10.1016/j.envpol.2019.02.017

    [11]

    WANG Y, SHI Y, VESTERGREN R, et al. Using hair, nail and urine samples for human exposure assessment of legacy and emerging per- and polyfluoroalkyl substances. Sci Total Environ,2018,636: 383–391. DOI: 10.1016/j.scitotenv.2018.04.279

    [12] 白桦, 崔艳妮, 郝楠, 等. 不粘锅涂层中全氟辛酸及其盐的气相色谱法测定. 分析测试学报,2007,26(6): 921–923. DOI: 10.3969/j.issn.1004-4957.2007.06.041
    [13]

    DAUCHY X, BOITEUX V, BACH C, et al. Mass flows and fate of per- and polyfluoroalkyl substances (PFASs) in the wastewater treatment plant of a fluorochemical manufacturing facility. Sci Total Environ,2017,576: 549–558. DOI: 10.1016/j.scitotenv.2016.10.130

    [14] 黄永周. 全氟辛酸的高效液相色谱3-BrAC柱前衍生荧光检测方法研究. 重庆: 重庆大学, 2018.
    [15]

    PELLIZZARO A, ZAGGIA A, FANT M, et al. Identification and quantification of linear and branched isomers of perfluorooctanoic and perfluorooctane sulfonic acids in contaminated groundwater in the veneto region. J Chromatogr A,2018,1533: 143–154. DOI: 10.1016/j.chroma.2017.12.036

    [16]

    WU N, CAI D, GUO M, et al. Per- and polyfluorinated compounds in saleswomen's urine linked to indoor dust in clothing shops. Sci Total Environ,2019,667: 594–600. DOI: 10.1016/j.scitotenv.2019.02.287

    [17]

    RIGDEN M, PELLETIER G, POON R, et al. Assessment of urinary metabolite excretion after rat acute exposure to perfluorooctanoic acid and other peroxisomal proliferators. Arch Environ Contam Toxicol,2015,68(1): 148–158. DOI: 10.1007/s00244-014-0058-y

    [18]

    CONCHA-GRANA E, FERNANDEZ-MARTINEZ G, LOPEZ-MAHIA P, et al. Fast and sensitive determination of per- and polyfluoroalkyl substances in seawater. J Chromatogr A,2018,1555: 62–73. DOI: 10.1016/j.chroma.2018.04.049

    [19]

    SSZABO D, COGGAN T L, ROBSON T C, et al. Investigating recycled water use as a diffuse source of per- and polyfluoroalkyl substances (PFASs) to groundwater in Melbourne, Australia. Sci Total Environ,2018,644: 1409–1417. DOI: 10.1016/j.scitotenv.2018.07.048

    [20]

    ZHOU Z, SHI Y, VESTERGREN R, et al. Highly elevated serum concentrations of perfluoroalkyl substances in fishery employees from tangxun lake, China. Environ Sci Technol,2014,48(7): 3864–3874. DOI: 10.1021/es4057467

    [21]

    HOLM A, WILSON S R, MOLANDER P, et al. Determination of perfluorooctane sulfonate and perfluorooctanoic acid in human plasma by large volume injection capillary column switching liquid chromatography coupled to electrospray ionization mass spectrometry. J Sep Sci,2004,27(13): 1071–1079. DOI: 10.1002/jssc.200301647

    [22]

    WANG Y, ZHONG Y, LI J, et al. Occurrence of perfluoroalkyl substances in matched human serum, urine, hair and nail. J Environ Sci (China),2018,67: 191–197. DOI: 10.1016/j.jes.2017.08.017

  • 期刊类型引用(6)

    1. 陈晓红,邱巧丽. 尿液中2种全氟化合物测定的液相色谱串联质谱法. 中华劳动卫生职业病杂志. 2024(03): 202-205 . 百度学术
    2. 江建明,李敏杰,叶铖,罗海威,洪文俊,郭良宏. 全氟和多氟烷基物质在人体生物样本中的检测方法与暴露水平研究进展. 环境化学. 2024(09): 2881-2896 . 百度学术
    3. 刘晓飞,王玮. LC-MS/MS测定化妆品中27种PFAS化合物. 当代化工研究. 2024(21): 74-78 . 百度学术
    4. 吴坤,周贻兵,赵君. 全氟化合物最新检测及去除方法研究进展. 贵州师范学院学报. 2023(12): 29-36 . 百度学术
    5. 杨觅,赵璇,黄馨仪,李卓雅,邹晓莉,任琳,雍莉,罗新月,曾红燕. 超高效液相色谱-串联三重四极杆质谱法检测血清中12种全氟化合物. 现代预防医学. 2022(10): 1867-1873+1911 . 百度学术
    6. 蔚彪,冯徐根,白子竹,韩军,杨萌,孙敬,吴秀芳,王贺. 液相色谱-质谱/质谱法测定纺织品中全氟己烷磺酸. 纺织科技进展. 2022(12): 39-42+55 . 百度学术

    其他类型引用(2)

图(4)  /  表(3)
计量
  • 文章访问数:  946
  • HTML全文浏览量:  317
  • PDF下载量:  91
  • 被引次数: 8
出版历程
  • 收稿日期:  2020-08-06
  • 修回日期:  2021-06-09
  • 网络出版日期:  2021-07-21
  • 发布日期:  2021-07-19

目录

/

返回文章
返回