Dietary Patterns and Their Association with Diabetes Mellitus in Middle-Aged and Older Rural Population in Xinxiang County, Henan Province
-
摘要:目的 分析河南省新乡县中老年农村居民糖尿病患病现状及其与膳食模式的相关性。方法 本研究基于河南省农村常见慢性非传染性疾病前瞻性队列研究中新乡县横断面调查数据,于2017年4−6月采用随机整群抽样方法在河南省新乡县抽取17个村落的18岁及以上农村常住居民进行问卷调查、体格检查和实验室检测。选取其中45~79岁中老年作为研究对象,采用因子分析法建立膳食模式,将膳食模式因子得分按四分位数分组(Q1~Q4),采用多因素logistic回归模型分析膳食模式与糖尿病的关系。结果 河南省新乡县7 604名中老年农村居民中,糖尿病者1 604例,患病率为21.1%;因子分析建立4种膳食模式,分别是动物型膳食模式、植物蛋类型膳食模式、混合型膳食模式和传统型膳食模式;不同膳食模式间的人口学特征分布不同,动物型膳食模式因子得分Q4组与Q1组间各测量学指标与临床指标差异无统计学意义(P>0.05);植物蛋类型膳食模式Q4组高密度脂蛋白胆固醇(HDL-C)低于Q1组且空腹血糖(FBG)分布不同,差异有统计学意义(P<0.05);混合型膳食模式Q4组收缩压(SBP)低于Q1组,差异有统计学意义(P<0.05);传统型膳食模式Q4组腰围(WC)低于Q1组,HDL-C高于Q1组,且糖化血红蛋白(HbA1c)、FBG分布不同,差异有统计学意义(P<0.05);在调整混杂因素后,多因素logistic回归分析结果显示,传统型膳食模式是糖尿病的保护因素〔比值比(OR)=0.810,95%置信区间(CI): 0.690~0.952,Ptrend<0.05〕。结论 河南省新乡县中老年农村居民糖尿病患病率较高,传统型膳食模式与糖尿病可能存在保护性关联。Abstract:Objective To analyze the prevalence of diabetes mellitus among middle-aged and older rural adults of Xinxiang county, Henan Province and its correlation with dietary patterns.Methods The study was done based on the data collected from a cross-sectional survey of Xinxiang County, which was part of the Prospective Cohort Study on the Common Chronic Non-Communicable Diseases in Rural areas of Henan Province. Randomized cluster sampling was used to select adult respondents (≥18 years old) from among the residents of 17 villages in Xinxiang county. The respondents completed questionnaires, and underwent physical examinations and laboratory tests between April, 2017 and June, 2017. A total of 7604 individuals aged between 45 and 79 were included in our study. Dietary patterns were established through factor analysis and the dietary pattern factor scores were divided into quartiles (Q1-Q4). The relationship between dietary patterns and diabetes mellitus was analyzed with multivariate logistic regression model.Results Out of the total of 7604 middle-aged and older rural adults in Xinxiang County, Henan Province, 1604 had diabetes mellitus, suggesting a 21.1% prevalence of diabetes mellitus. Factor analysis was used to establish four dietary patterns, namely animal-based diet, vegetable-egg diet, mixed diet and traditional diet. Subjects of these four dietary patterns displayed different demographic characteristics. There were no statistical difference in anthropometricor clinical indicators between the quartile with the lowest dietary pattern factor score (Q1) and the quartile with the highest dietary pattern factor score (Q4) for subjects with animal-based diet (P>0.05). Compared with those in the Q1 quartile of vegetable-egg diet, subjects in the Q4 quartile of vegetable-egg diet showed lower levels of high-density lipoprotein cholesterol (HDL-C), along with different distribution of fasting blood glucose (FBG), showing statistically significant difference (P<0.05). In comparison to subjects in Q1 quartile of mixed diet, those in Q4 quartile showed lower levels of systolic blood pressure (SBP), the difference being statistically significant (P<0.05). In the traditional diet group, subjects in the Q4 quartile had lower waist circumference (WC), but higher levels of HDL-C than those of subjects in Q1 quartile. In addition, the distribution of glycated-hemoglobin (HbA1c) and FBG were different, the difference being statistically significant (P<0.05). The results of multivariate logistic regression analysis demonstrated that traditional diet could be a protective factor of diabetes mellitus (odds ratio [OR]=0.810, 95%CI: 0.690-0.952, Ptrend<0.05) after adjusting for multiple confounding factors.Conclusion The prevalence of diabetes in middle-aged and older rural residents is relatively high in Xinxiang County, Henan Province, and there may be a protective relationship between traditional diet and diabetes mellitus.
-
Keywords:
- Diabetes mellitus /
- Dietary pattern /
- Middle-aged and older adults /
- Rural residents
-
糖尿病是一种常见的营养相关代谢性疾病,发病机制较为复杂,目前认为是遗传因素与膳食等环境因素交互作用的结果[1]。依据2015−2017年全国代表性的横断面数据分析[2],我国18岁及以上人群总糖尿病的加权患病率达11.2%。同时,我国另外一项纳入超过50万人的全国性前瞻队列研究[3]发现,尽管糖尿病在城市地区更为常见,但它却与农村地区更高的死亡率有关。我国人口基数大,地区间教育、经济和医疗卫生状况发展不平衡,中老年人群慢性病患病率较高,尤其是在医疗条件和卫生保健意识较为薄弱的农村地区。此外,食物、营养素摄入与糖尿病息息相关,与单一的食物、营养素相比,膳食模式能够全面地反映群体的饮食暴露,预测疾病发生风险[4-5],近年来,国内外学者开始致力于研究膳食模式与营养代谢性疾病的关系[6-7]。不同经济、文化、地域背景下可能塑造了特征不一的膳食模式,河南省地处中原,是农业大省和人口大省,农村人口比例较高,饮食习惯与其他地域不同。本研究以河南省新乡县农村地区常住中老年居民为研究对象,分析该地区中老年人群糖尿病患病状况及其与膳食模式的关系,为该地区糖尿病的预防控制及合理膳食指导提供理论依据。
1. 对象与方法
1.1 研究对象
本研究基于河南省农村常见慢性非传染性疾病前瞻性队列研究[8]中新乡县横断面调查数据,依据经济发展水平,于2017年4−6月采用随机整群抽样的方法在河南省新乡县随机抽取七里营(经济较为发达)和朗公庙(经济较为不发达)2个镇的17个农村村落作为调查地区,将该地区18岁及以上成年常住居民(居住时间≥6个月)作为调查对象进行问卷调查、体格检查和实验室检测。本次共调查10 691人,选取其中45~79岁7 604人作为本次研究对象,本研究经过新乡医学院伦理委员会批准(XYLL-2016242),所有调查对象均自愿参加并签署知情同意书。
1.2 调查方法
1.2.1 问卷调查
采用自行设计的调查问卷[9],由经过统一培训合格的调查人员进行面访调查。内容包括人口学特征(性别、年龄、文化程度、婚姻状况、职业等)、生活习惯(吸烟、饮酒、运动等)、患病状况(高血压、血脂异常等)。其中,从不吸烟指平均吸烟<1支/d,吸烟指吸烟≥1支/d且持续≥6个月[10];从不饮酒指饮酒<12次/年,饮酒指饮酒≥12次/年[11];运动指进行慢跑、跳舞、一般速度骑车等(不包括走路)运动≥30 min/次且≥2次/周[12]。高血压、血脂异常者均为二级以上医疗机构确诊者。采用食物频率法调查研究对象过去一年的食物消费习惯,包括是否消费、消费时的食用频率及平均每次食用量。
1.2.2 体格检查
由经过统一培训的体检人员进行身高、体质量、腰围和血压的测量(各测量仪器在使用前均经过严格校准),并计算体质量指数(body mass index, BMI)=体质量/身高2。其中,体质量单位为kg,身高单位为m。BMI<18.5 kg/m2为低体质量,18.5 kg/m2≤BMI<24.0 kg/m2为正常体质量,24.0 kg/m2≤BMI<28.0 kg/m2为超重,≥28.0 kg/m2为肥胖;男性腰围(waist circumference, WC)≥85 cm/女性WC≥80 cm为中心性肥胖[13];高血压[14]指收缩压(systolic blood pressure, SBP)≥140 mmHg(1 mmHg=0.133 kPa)或舒张压(diastolic blood pressure, DBP)≥90 mmHg或既往诊断为高血压。
1.2.3 实验室检测
抽取调查对象空腹静脉血5 mL,由新乡雅仕杰医学检验所进行空腹血糖(fasting blood glucose, FBG)、糖化血红蛋白(glycated-hemoglobin, HbA1c)、总胆固醇(total cholesterol, TC)、三酰甘油(triglyceride, TG)、低密度脂蛋白胆固醇(low-density lipoprotein cholesterol, LDL-C)和高密度脂蛋白胆固醇(high-density lipoprotein cholesterol, HDL-C)等血生化指标检测。其中,糖尿病[15]指FBG≥7.0 mmol/L或HbA1c≥6.5%或既往诊断为糖尿病;血脂异常[16]指TC≥6.2 mmol/L或(和)TG≥2.3 mmol/L或(和)LDL-C≥4.1 mmol/L或HDL-C≤1.0 mmol/L。
1.2.4 膳食模式及分析
膳食调查采用食物频率法,收集研究对象过去1年内食物消费的频率和数量,消费频率分为每天、每周、每月、每年、不吃5个等级,共包括主食类(面条、大米、馒头等)、红肉类(猪、牛、羊肉)、禽肉类(鸡、鹅、鸭肉等)、鱼肉类、蛋类、奶制品、水果类、蔬菜类、豆制品类、干果类、咸菜类、杂粮类(玉米、薯类等)共12种主要食物。应用因子分析法建立膳食模式,模型估计采用主成分分析和方差最大正交旋转法,计算膳食因子得分,选取特征根>1及方差累计贡献度作为公因子入选标准,并以较大因子负荷的公因子及组分特点进行膳食模式划分和命名。对每种膳食模式按照膳食因子得分的四分位数划分为4个水平(Q1、Q2、Q3、Q4),Q1表示最不倾向于此种膳食模式,Q4表示最倾向于此膳食模式[17]。
1.3 统计学方法
计量资料符合正态分布采用
$ \overline{x}\pm s $ 表示,不符合正态分布采用中位数(M)和四分位数(P25~P75)表示;计数资料以频数、构成比或百分率表示。组间比较采用χ2检验、Mann-Whitney U检验或方差分析,膳食模式与糖尿病风险分析采用多因素logistic回归,α=0.05,采用等级变量转换的方法计算趋势检验P值。2. 结果
2.1 一般情况
本研究共纳入7 604例研究对象,男性3 094例,女性4 510例。其中糖尿病者1 604例,非糖尿病者6 000例,糖尿病患病率为21.1%。糖尿病患者与非患者间不同年龄、性别、文化程度、职业、人均月收入、BMI、中心性肥胖、吸烟情况、饮酒情况、患高血压和患血脂异常的人群比例差异有统计学意义(P<0.05),而不同运动情况的人群比例差异无统计学意义(P>0.05),见表1。
表 1 河南省新乡县中老年农村居民一般特征Table 1. General characteristics of participants with and without diabetesVariable Diabetic/case (%), n=1604 Non-diabetes/case (%), n=6000 χ2 P Age/yr. 128.307 <0.001 45-59 606 (37.78) 3222 (53.70) 60-79 998 (62.22) 2778 (46.30) Gender 8.735 0.003 Male 601 (37.47) 2493 (41.55) Female 1003 (62.53) 3507 (58.45) Education level 78.942 <0.001 ≤Primary school 858 (53.49) 2478 (41.30) Middle school 530 (33.04) 2389 (39.82) ≥High school 216 (13.47) 1133 (18.88) Occupation 50.399 <0.001 Farmer 1278 (79.68) 4362 (72.70) Worker 132 (8.23) 861 (14.35) Employee/manager 81 (5.05) 396 (6.60) Retiree 113 (7.04) 381 (6.35) Monthly income/¥ 24.059 <0.001 <500 707 (44.08) 2295 (38.25) 500- 571 (35.60) 2195 (36.58) 1 000- 244 (15.21) 1098 (18.30) 2 000- 82 (5.11) 412 (6.87) BMI 134.465 <0.001 Normal body mass 367 (22.88) 1996 (33.27) Low body mass 8 (0.50) 80 (1.33) Overweight 680 (42.39) 2625 (43.75) Obesity 549 (34.23) 1299 (21.65) Central obesity 106.295 <0.001 Yes 1328 (82.79) 4192 (69.87) No 276 (17.21) 1808 (30.13) Smoking status 9.982 0.002 Yes 397 (24.75) 1724 (28.73) No 1207 (75.25) 4276 (71.27) Drinking status 13.270 <0.001 Yes 320 (19.95) 1457 (24.28) No 1284 (80.05) 4543 (75.72) Physical activity 1.202 0.273 Yes 1355 (84.48) 5134 (85.57) No 249 (15.52) 866 (14.43) Hypertension 70.197 <0.001 Yes 988 (61.60) 2990 (49.83) No 616 (38.40) 3010 (50.17) Dyslipidemia 82.355 <0.001 Yes 1340 (83.54) 4348 (72.47) No 264 (16.46) 1652 (27.53) BMI: Body mass index. 2.2 膳食模式
采用因子分析降维的方法将膳食种类进行主成分分析并归类,KMO检验统计量为0.654,Bartlett球形检验P<0.001,适合于因子分析。分析得到特征根>1的公因子有4个,总方差的累计贡献度为44.37%,提取4个公因子对应4种膳食模式,根据因子载荷及食物成分特征命名膳食模式。因子1为动物型膳食模式,以各种肉类摄入为主;因子2为植物蛋类膳食模式,以水果类、豆制品类和蛋类摄入为主;因子3为混合型膳食模式,以腌制品、奶制品和干果类摄入为主;因子4为传统型膳食模式,以蔬菜类、主食和杂粮类摄入为主,见表2。
表 2 膳食模式的因子载荷Table 2. Factor-loading matrix for dietary patternsFood group Dietary patterns Animal pattern Vegetative pattern Mixed pattern Traditional pattern Refined grains − −0.157 − 0.625 Whole grains − 0.162 0.171 0.433 Red meat 0.660 0.140 −0.211 − Poultry 0.827 − − − Fish 0.726 − 0.270 − Eggs − 0.545 −0.218 0.279 Dairy products 0.102 −0.208 0.587 0.168 Fruits − 0.645 0.128 − Vegetables − − − 0.629 Soybeans 0.140 0.549 0.130 −0.148 Nuts 0.116 0.360 0.540 − Pickled vegetables − 0.133 0.589 − Absolute values<0.1 were excluded for simplicity. 2.3 不同膳食模式居民的人口学特征分布
动物型膳食模式Q4组与Q1组比较,男性人群比例、职业为农民的人群比例、人均月收入1 000元以下的人群比例均升高,吸烟和饮酒的人群比例均有所下降,差异有统计学意义(P<0.05);植物蛋类膳食模式Q4组与Q1组比较,45~59岁人群比例,职业为农民、工人的人群比例,人均月收入1 000元以下的人群比例,运动人群比例均升高,差异有统计学意义(P<0.05);混合型膳食模式Q4组与Q1组比较,45~59岁人群比例、男性人群比例、初中及以上人群比例、吸烟和饮酒的人群比例、运动人群比例均升高,职业为农民、患高血压的人群比例降低,差异有统计学意义(P<0.05);传统型膳食模式Q4组与Q1组比较,高中及以上文化程度人群比例升高,职业为农民人群比例降低,人均月收入1000元以下的人群比例降低,无运动人群比例升高,患血脂异常人群比例降低,差异有统计学意义(P<0.05)。见表3。
表 3 不同膳食模式居民的人口学特征分布Table 3. Distribution of demographic features of participants across quartiles of the major dietary patternsVariable Animal pattern/case (%) Vegetative pattern/case (%) Mixed pattern/case (%) Traditional pattern/case (%) Q1 (n=1901) Q4 (n=1901) P Q1 (n=1901) Q4 (n=1902) P Q1 (n=1902) Q4 (n=1901) P Q1 (n=1901) Q4 (n=1899) P Age/yr. 0.417 <0.001 <0.001 0.134 45-59 912 (47.97) 887 (46.66) 881 (46.34) 992 (52.16) 822 (43.22) 1094 (57.55) 1007 (52.97) 1052 (55.40) 60-79 989 (52.03) 1014 (53.34) 1020 (53.66) 910 (47.84) 1080 (56.78) 807 (42.45) 894 (47.03) 847 (44.60) Gender 0.008 0.205 0.011 0.231 Male 660 (34.72) 739 (38.87) 794 (41.77) 756 (39.75) 746 (39.22) 823 (43.29) 784 (41.24) 747 (39.34) Female 1241 (65.28) 1162 (61.13) 1107 (58.23) 1146 (60.25) 1156 (60.78) 1078 (56.71) 1117 (58.76) 1152 (60.66) Education level 0.150 0.111 <0.001 0.038 ≤Primary school 953 (50.13) 896 (47.13) 859 (45.19) 866 (45.53) 1011 (53.15) 686 (36.09) 839 (44.13) 790 (41.60) Middle school 663 (34.88) 690 (36.30) 694 (36.51) 734 (38.59) 639 (33.60) 782 (41.14) 764 (40.19) 754 (39.71) ≥High school 285 (14.99) 315 (16.57) 348 (18.31) 302 (15.88) 252 (13.25) 433 (22.78) 298 (15.68) 355 (18.69) Occupation 0.016 <0.001 <0.001 <0.001 Farmer 1428 (75.12) 1490 (78.38) 1381 (72.65) 1454 (76.45) 1495 (78.60) 1320 (69.44) 1465 (77.06) 1349 (71.04) Worker 237 (12.47) 226 (11.89) 233 (12.26) 256 (13.46) 211 (11.09) 286 (15.04) 249 (13.10) 269 (14.17) Manager 113 (5.94) 74 (3.89) 131 (6.89) 104 (5.47) 75 (3.94) 162 (8.52) 88 (4.63) 152 (8.00) Retiree 123 (6.47) 110 (5.84) 156 (8.21) 88 (4.63) 121 (6.36) 133 (7.00) 99 (5.21) 129 (6.79) Monthly income/¥ <0.001 <0.001 <0.001 <0.001 <500 772 (40.61) 823 (43.29) 769 (40.45) 812 (42.69) 861 (45.27) 700 (36.82) 813 (42.77) 712 (37.49) 500- 634 (33.35) 720 (37.87) 635 (33.40) 689 (36.70) 637 (33.49) 684 (35.98) 745 (39.19) 635 (33.44) 1000- 377 (19.83) 279 (14.68) 346 (18.20) 291 (15.30) 308 (16.19) 360 (18.94) 267 (14.05) 391 (20.59) 2000- 118 (6.21) 79 (4.16) 151 (7.94) 101 (5.31) 96 (5.05) 157 (8.26) 76 (4.00) 161 (8.48) BMI 0.155 0.082 0.607 0.177 Normal body mass 566 (29.77) 625 (32.88) 580 (30.51) 595 (31.28) 596 (31.34) 590 (31.04) 569 (29.93) 604 (31.81) Low body mass 29 (1.53) 22 (1.16) 31 (1.63) 14 (0.74) 20 (1.05) 27 (1.42) 24 (1.26) 23 (1.21) Overweight 828 (43.56) 808 (42.50) 824 (43.35) 819 (43.06) 807 (42.43) 827 (43.50) 807 (42.45) 829 (43.65) Obesity 478 (25.14) 446 (23.46) 466 (24.51) 474 (24.92) 479 (25.18) 457 (24.04) 501 (26.35) 443 (23.33) Central obesity 0.088 0.818 0.780 0.620 No 501 (26.35) 548 (28.83) 508 (26.72) 502 (26.39) 533 (28.02) 525 (27.62) 504 (26.51) 517 (27.22) Yes 1400 (73.65) 1353 (71.17) 1393 (73.28) 1400 (73.61) 1369 (71.98) 1376 (72.38) 1397 (73.49) 1382 (72.78) Smoking status 0.001 0.393 0.003 0.555 No 1472 (77.43) 1384 (72.80) 1377 (72.44) 1354 (71.19) 1405 (73.87) 1323 (69.59) 1349 (70.96) 1364 (71.83) Yes 429 (22.57) 517 (27.20) 524 (27.56) 548 (28.81) 497 (26.13) 578 (30.41) 552 (29.04) 535 (28.17) Drinking status 0.008 0.223 <0.001 0.506 No 1564 (82.27) 1499 (78.85) 1474 (77.54) 1443 (75.87) 1500 (78.86) 1404 (73.86) 1434 (75.43) 1450 (76.36) Yes 337 (17.73) 402 (21.15) 427 (22.46) 459 (24.13) 402 (21.14) 497 (26.14) 467 (24.57) 449 (23.64) Physical activity 0.055 0.002 0.005 0.029 No 303 (15.94) 261 (13.73) 325 (17.10) 255 (13.41) 315 (16.56) 253 (13.31) 263 (13.83) 311 (16.38) Yes 1598 (84.06) 1640 (86.27) 1576 (83.90) 1647 (86.59) 1587 (83.44) 1648 (86.69) 1638 (86.17) 1588 (83.62) Hypertension 0.193 0.808 <0.001 0.821 No 858 (45.13) 898 (47.24) 873 (45.92) 866 (45.53) 814 (42.80) 958 (50.39) 913 (48.03) 919 (48.39) Yes 1043 (54.87) 1003 (52.76) 1028 (54.08) 1036 (54.47) 1088 (57.20) 943 (49.61) 988 (51.97) 980 (51.61) Dyslipidemia 0.822 0.071 0.845 0.035 No 472 (24.83) 478 (25.14) 438 (23.04) 486 (25.55) 479 (25.18) 484 (25.46) 449 (23.62) 505 (26.59) Yes 1429 (75.17) 1423 (74.86) 1463 (76.96) 1416 (74.45) 1423 (74.82) 1417 (74.54) 1452 (76.38) 1394 (73.41) BMI: Body mass index. P value was calculated by chi-square test for categorical variables. 2.4 不同膳食模式居民的人体测量学指标及临床指标比较
动物型膳食模式Q4组与Q1组比较,各人体测量学指标与临床指标差异无统计学意义(P>0.05);植物蛋类膳食模式Q4组HDL-C低于Q1组且FBG分布不同,差异有统计学意义(P<0.05);混合型膳食模式Q4组SBP低于Q1组,差异有统计学意义(P<0.05);传统型膳食模式Q4组WC低于Q1组,HDL-C高于Q1组,且HbA1c、FBG分布不同,差异有统计学意义(P<0.05)。见表4。
表 4 不同膳食模式居民的人体测量学指标和临床指标分布Table 4. Distribution of anthropometric measurements and clinical indicators in the lowest (Q1) and highest (Q4) quartiles of each dietary patternVariable Animal pattern Vegetative pattern Mixed pattern Traditional pattern Q1 (n=1 901) Q4 (n=1 901) Q1 (n=1 901) Q4 (n=1 902) Q1 (n=1 902) Q4 (n=1 901) Q1 (n=1 901) Q4 (n=1 899) BMI/(kg/m2) 25.73±3.53 25.60±3.59 25.66±3.63 25.80±3.56 25.79±3.64 25.68±3.56 25.86±3.67 25.69±3.55 WC/cm 87.96±10.12 87.51±10.43 88.30±10.38 88.14±10.07 88.13±10.26 87.80±10.23 88.49±10.40 87.66±10.00# SBP/mmHg 135.14±20.26 135.52±19.42 135.00±19.55 135.43±19.95 135.80±19.38 133.78±19.59# 135.08±19.95 134.43±19.89 DBP/mmHg 82.75±11.39 82.70±10.81 82.97±11.12 83.05±11.29 82.94±11.01 82.69±11.39 83.16±11.37 82.79±11.31 TC/(mmol/L) 5.39±1.06 5.34±1.05 5.40±1.05 5.34±1.06 5.34±1.00 5.37±1.08 5.39±1.04 5.35±1.06 HDL-C/(mmol/L) 1.26±0.31 1.28±0.31 1.27±0.32 1.25±0.30# 1.27±0.31 1.26±0.31 1.25±0.31 1.28±0.32# LDL-C/(mmol/L) 3.06±0.87 3.05±0.85 3.08±0.87 3.04±0.86 3.04±0.84 3.08±0.85 3.09±0.87 3.08±0.88 TG/(mmol/L)* 1.44 (1.04-2.07) 1.41 (1.01-1.99) 1.45 (1.04-2.07) 1.43 (1.04-2.06) 1.42 (1.04-2.02) 1.44 (1.04-2.07) 1.45 (1.05-2.11) 1.42 (1.03-2.02) HbA1c/%* 5.70(5.30-6.10) 5.70 (5.30-6.10) 5.70 (5.30-6.10) 5.70 (5.40-6.10) 5.70 (5.30-6.10) 5.70 (5.30-6.10) 5.75 (5.40-6.20) 5.60 (5.30-6.00)# FBG/(mmol/L)* 5.50 (5.10-6.10) 5.50 (5.10-6.10) 5.50 (5.10-6.20) 5.50 (5.10-6.00)# 5.50 (5.10-6.10) 5.50 (5.10-6.00) 5.50 (5.10-6.20) 5.50 (5.10-6.01)# BMI: Body mass index; WC: Waist circumference; SBP: Systolic blood pressure; DBP: Diastolic blood pressure; TC: Total cholesterol; HDL-C: High-density lipoprotein cholesterol; LDL-C: Low-density lipoprotein cholesterol; TG: Triglyceride; HbA1c: Glycated-hemoglobin; FBG: Fasting blood glucose. *TG, HbA1c and FBG were not of normal distribution, and were presented as median (M) and interquartile range (P25-P75). #P<0.05, vs. Q1. 2.5 不同膳食模式与糖尿病关系的多因素logistic回归分析
以河南省新乡县中老年农村居民是否患糖尿病为因变量(0=否,1=是),调整年龄、性别、文化程度、职业、人均月收入、吸烟情况、饮酒情况、运动情况、BMI、中心性肥胖、高血压和血脂异常患病情况进行多因素logistic回归分析。结果显示,传统型膳食模式与糖尿病存在统计学关联。调整相关因素后,传统型膳食模式在3个模型中均与糖尿病呈负相关关系,是糖尿病患病的保护因素。传统型膳食模式因子得分Q4分组水平人群较Q1分组水平人群的糖尿病患病风险分别降低了21.1%(模型1)、19.6%(模型2)和19.0%(模型3),趋势检验均有统计学意义(P<0.05),见表5。
表 5 不同膳食模式与糖尿病关系的多因素logistic回归分析Table 5. Multivariable adjusted odds ratio (OR) and 95% confidence interval (CI) for diabetes across the quartile categories of dietary patternsDietary pattern Model 1# Model 2# Model 3# Animal pattern Q1 1.00 (ref) 1.00 (ref) 1.00 (ref) Q2 1.042 (0.889, 1.222) 1.043 (0.888, 1.226) 1.054 (0.897, 1.239) Q3 1.030 (0.879, 1.209) 1.023 (0.871, 1.202) 1.025 (0.872, 1.205) Q4 1.058 (0.904, 1.237) 1.071 (0.914, 1.255) 1.070 (0.913, 1.255) Ptrend 0.534 0.466 0.489 Vegetative pattern Q1 1.00 (ref) 1.00 (ref) 1.00 (ref) Q2 0.926 (0.791, 1.084) 0.933 (0.796, 1.094) 0.952 (0.811, 1.117) Q3 0.996 (0.851, 1.165) 1.004 (0.857, 1.177) 1.016 (0.866, 1.191) Q4 0.954 (0.815, 1.117) 0.946 (0.807, 1.110) 0.954 (0.813, 1.120) Ptrend 0.780 0.714 0.765 Mixed pattern Q1 1.00 (ref) 1.00 (ref) 1.00 (ref) Q2 1.074 (0.917, 1.258) 1.074 (0.916, 1.260) 1.082 (0.922, 1.270) Q3 1.111 (0.949, 1.301) 1.123 (0.957, 1.317) 1.134 (0.966, 1.331) Q4 1.096 (0.933, 1.286) 1.101 (0.936, 1.295) 1.109 (0.942, 1.305) Ptrend 0.228 0.197 0.170 Traditional pattern Q1 1.00 (ref) 1.00 (ref) 1.00 (ref) Q2 0.861 (0.737, 1.005) 0.862 (0.737, 1.008) 0.863 (0.737, 1.010) Q3 0.808 (0.691, 0.945) 0.837 (0.714, 0.980) 0.843 (0.719, 0.988) Q4 0.789 (0.674, 0.925) 0.804 (0.685, 0.944) 0.810 (0.690, 0.952) Ptrend 0.002 0.008 0.011 Model 1: Adjusted for age, gender, education level, occupation, monthly income, smoking and drinking status, and physical activity; Model 2: Additionally adjusted for BMI; Model 3: Further adjusted for occurrence of hypertension and hyperlipidemia. # Data are presented as OR (95%CI). 3. 讨论
本研究结果显示,河南省新乡县中老年农村居民糖尿病患病率为21.1%,高于山东省农村地区糖尿病患病率3.5%[18]、吉林省农村地区糖尿病患病率7.2%[19]以及上海农村地区糖尿病患病率16.1%[20],提示新乡县中老年农村居民糖尿病患病率较高。河南省是中国的农业和人口大省,农村居民人口构成比较高,受教育水平和经济收入较低,卫生保健意识相对淡薄,且患病的自我知晓率和控制率较低[21],在我国人口老龄化趋势日益凸显的背景下,共同构成了新乡县农村地区较高的糖尿病发病风险。
饮食摄入作为机体肠道暴露于外源性营养素的主要形式,维系着机体吸收、分布、代谢等重要生物学过程,是人类基因与环境交互的重要组成部分,被认为与基因的表观遗传学改变有关[22]。膳食模式涵盖了日常摄入的多种食物营养素,既能体现各类营养素摄入的总体水平,又能够反映出某一地域性饮食物质的慢性暴露状况,有利于研究疾病与膳食摄入之间的相互关系[23],为疾病预防控制提供理论依据。本研究分析得到动物型、植物蛋类型、混合型和传统型4种膳食模式,不同膳食模式分组间人群的人口学特征及检测指标分布不同。
本研究多因素分析调整多重混杂因素后发现,传统型膳食模式与糖尿病患病风险呈负相关关系,为保护因素,且传统型膳食模式Q4组WC低于Q1组,HDL-C高于Q1组,HbA1c和FBG分布不同,表明以主食、蔬菜和杂粮类为主的传统型膳食模式的不同水平可能导致以上指标在人群中的差异分布,这与束莉等[24]和余方琳等[25]研究结果相似,而且高水平HDL-C是心血管疾病的保护因素,可能进一步降低了糖尿病的患病风险。然而并未发现以禽肉、红肉类为主的动物型膳食模式与糖尿病之间的健康风险关联,与以往国外研究并不一致,分析其原因,一方面,欧美国家居民更喜欢加工过的红肉类食物[26](如午餐肉、香肠、培根等),而加工过的红肉类食物通常含有高浓度的硝酸盐、亚硝酸盐以及亚硝胺化合物,与未经加工的红肉类食物相比,它们更有可能增加糖尿病的风险[27]。与此同时,丹麦的一项队列研究[28]也表明了用未加工的红肉代替加工过的红肉可以降低糖尿病的患病风险。另一方面,饮食很大程度上塑造了肠道菌群,而肠道菌群也影响着宿主的营养摄取和能量调节[29]。研究表明,肠道菌群和膳食纤维的产物短链脂肪酸,可以介导G蛋白偶联受体43(G protein-coupled receptor 43, GPR43)的激活,抑制脂肪细胞中的胰岛素信号传导,从而抑制脂肪在脂肪组织中的积累,进而对糖尿病产生影响[30]。然而,肠道菌群在人群和地区间仍存在不同程度差异[31],这些差异仍有待进一步评估。植物蛋类型膳食模式Q4组HDL-C低于Q1组,可能与缺少肉类营养素摄入有关,本研究未发现植物蛋类型和混合型膳食模式与糖尿病之间的健康风险关联,可能是与食物营养素的摄入量有关。水果中含有丰富的维生素C、E,被认为是抗氧化剂[32-33],而大豆及其制品也含有丰富的大豆蛋白和大豆异黄醇,具有抗氧化活性[34],且能够增加肠道中产短链脂肪酸的细菌[35],均能降低糖尿病患病风险。但蛋类中胆固醇较高[36],腌制蔬菜中含有大量的盐分而易导致高血压,却是糖尿病患病的危险因素。而混合型膳食模式以咸菜、奶制品和干果类为主,咸菜中含有大量的硝酸盐、亚硝酸盐和N-亚硝基化合物,可能会导致胃癌[37]和高血压[38]的发生,有研究表明,在中国青少年和成年人群中,腌制蔬菜摄入量与HbA1c和LDL-C呈正相关关系[39],能够增加患糖尿病的风险。尽管如此,腌制蔬菜摄入与糖尿病患病风险之间依然缺乏更直接的证据。干果类含有丰富的纤维、脂肪、矿物质及其他生物活性成分,能够在细胞和分子水平上调控多种基因机制[40],对糖尿病产生有利影响。此外,在一定剂量范围内,乳制品摄入与糖尿病风险降低有关,尤其是酸奶和低脂乳品[41]。然而,尽管红肉类、蛋类、腌制品可能增加糖尿病患病风险,但膳食摄入以多种食物成分混合的形式进入人体,膳食暴露的剂量反应关系以及肠道菌群在能量代谢和免疫调节方面的功能仍需进一步探究。因此,新乡县农村地区膳食模式与糖尿病风险之间的关系依然有待进一步验证。
本研究也存在一定局限性,首先,本研究数据来自横断面调查,并不能证明膳食暴露与疾病之间的因果关系。同时,膳食频率状况来自调查对象自我报告,可能引入信息偏倚。1型糖尿病发病年龄通常小于30岁,本研究所调查人群以中老年居民居多,且仅靠血糖水平不能区分1型和2型糖尿病,所以本研究未进行糖尿病分型,也可能引入信息偏倚。最后,可能存在潜在的社会经济和遗传因素未被评估。综上所述,本研究一定程度上反映了河南省新乡县中老年农村居民糖尿病患病状况的严峻形势,揭示了该地区膳食模式与糖尿病的相关关系,但农村不同地区之间仍可能存在地域和饮食习惯等差异,要获得更加科学、精准的数据,尚需进一步开展前瞻性研究。
* * *
利益冲突 所有作者均声明不存在利益冲突
-
表 1 河南省新乡县中老年农村居民一般特征
Table 1 General characteristics of participants with and without diabetes
Variable Diabetic/case (%), n=1604 Non-diabetes/case (%), n=6000 χ2 P Age/yr. 128.307 <0.001 45-59 606 (37.78) 3222 (53.70) 60-79 998 (62.22) 2778 (46.30) Gender 8.735 0.003 Male 601 (37.47) 2493 (41.55) Female 1003 (62.53) 3507 (58.45) Education level 78.942 <0.001 ≤Primary school 858 (53.49) 2478 (41.30) Middle school 530 (33.04) 2389 (39.82) ≥High school 216 (13.47) 1133 (18.88) Occupation 50.399 <0.001 Farmer 1278 (79.68) 4362 (72.70) Worker 132 (8.23) 861 (14.35) Employee/manager 81 (5.05) 396 (6.60) Retiree 113 (7.04) 381 (6.35) Monthly income/¥ 24.059 <0.001 <500 707 (44.08) 2295 (38.25) 500- 571 (35.60) 2195 (36.58) 1 000- 244 (15.21) 1098 (18.30) 2 000- 82 (5.11) 412 (6.87) BMI 134.465 <0.001 Normal body mass 367 (22.88) 1996 (33.27) Low body mass 8 (0.50) 80 (1.33) Overweight 680 (42.39) 2625 (43.75) Obesity 549 (34.23) 1299 (21.65) Central obesity 106.295 <0.001 Yes 1328 (82.79) 4192 (69.87) No 276 (17.21) 1808 (30.13) Smoking status 9.982 0.002 Yes 397 (24.75) 1724 (28.73) No 1207 (75.25) 4276 (71.27) Drinking status 13.270 <0.001 Yes 320 (19.95) 1457 (24.28) No 1284 (80.05) 4543 (75.72) Physical activity 1.202 0.273 Yes 1355 (84.48) 5134 (85.57) No 249 (15.52) 866 (14.43) Hypertension 70.197 <0.001 Yes 988 (61.60) 2990 (49.83) No 616 (38.40) 3010 (50.17) Dyslipidemia 82.355 <0.001 Yes 1340 (83.54) 4348 (72.47) No 264 (16.46) 1652 (27.53) BMI: Body mass index. 表 2 膳食模式的因子载荷
Table 2 Factor-loading matrix for dietary patterns
Food group Dietary patterns Animal pattern Vegetative pattern Mixed pattern Traditional pattern Refined grains − −0.157 − 0.625 Whole grains − 0.162 0.171 0.433 Red meat 0.660 0.140 −0.211 − Poultry 0.827 − − − Fish 0.726 − 0.270 − Eggs − 0.545 −0.218 0.279 Dairy products 0.102 −0.208 0.587 0.168 Fruits − 0.645 0.128 − Vegetables − − − 0.629 Soybeans 0.140 0.549 0.130 −0.148 Nuts 0.116 0.360 0.540 − Pickled vegetables − 0.133 0.589 − Absolute values<0.1 were excluded for simplicity. 表 3 不同膳食模式居民的人口学特征分布
Table 3 Distribution of demographic features of participants across quartiles of the major dietary patterns
Variable Animal pattern/case (%) Vegetative pattern/case (%) Mixed pattern/case (%) Traditional pattern/case (%) Q1 (n=1901) Q4 (n=1901) P Q1 (n=1901) Q4 (n=1902) P Q1 (n=1902) Q4 (n=1901) P Q1 (n=1901) Q4 (n=1899) P Age/yr. 0.417 <0.001 <0.001 0.134 45-59 912 (47.97) 887 (46.66) 881 (46.34) 992 (52.16) 822 (43.22) 1094 (57.55) 1007 (52.97) 1052 (55.40) 60-79 989 (52.03) 1014 (53.34) 1020 (53.66) 910 (47.84) 1080 (56.78) 807 (42.45) 894 (47.03) 847 (44.60) Gender 0.008 0.205 0.011 0.231 Male 660 (34.72) 739 (38.87) 794 (41.77) 756 (39.75) 746 (39.22) 823 (43.29) 784 (41.24) 747 (39.34) Female 1241 (65.28) 1162 (61.13) 1107 (58.23) 1146 (60.25) 1156 (60.78) 1078 (56.71) 1117 (58.76) 1152 (60.66) Education level 0.150 0.111 <0.001 0.038 ≤Primary school 953 (50.13) 896 (47.13) 859 (45.19) 866 (45.53) 1011 (53.15) 686 (36.09) 839 (44.13) 790 (41.60) Middle school 663 (34.88) 690 (36.30) 694 (36.51) 734 (38.59) 639 (33.60) 782 (41.14) 764 (40.19) 754 (39.71) ≥High school 285 (14.99) 315 (16.57) 348 (18.31) 302 (15.88) 252 (13.25) 433 (22.78) 298 (15.68) 355 (18.69) Occupation 0.016 <0.001 <0.001 <0.001 Farmer 1428 (75.12) 1490 (78.38) 1381 (72.65) 1454 (76.45) 1495 (78.60) 1320 (69.44) 1465 (77.06) 1349 (71.04) Worker 237 (12.47) 226 (11.89) 233 (12.26) 256 (13.46) 211 (11.09) 286 (15.04) 249 (13.10) 269 (14.17) Manager 113 (5.94) 74 (3.89) 131 (6.89) 104 (5.47) 75 (3.94) 162 (8.52) 88 (4.63) 152 (8.00) Retiree 123 (6.47) 110 (5.84) 156 (8.21) 88 (4.63) 121 (6.36) 133 (7.00) 99 (5.21) 129 (6.79) Monthly income/¥ <0.001 <0.001 <0.001 <0.001 <500 772 (40.61) 823 (43.29) 769 (40.45) 812 (42.69) 861 (45.27) 700 (36.82) 813 (42.77) 712 (37.49) 500- 634 (33.35) 720 (37.87) 635 (33.40) 689 (36.70) 637 (33.49) 684 (35.98) 745 (39.19) 635 (33.44) 1000- 377 (19.83) 279 (14.68) 346 (18.20) 291 (15.30) 308 (16.19) 360 (18.94) 267 (14.05) 391 (20.59) 2000- 118 (6.21) 79 (4.16) 151 (7.94) 101 (5.31) 96 (5.05) 157 (8.26) 76 (4.00) 161 (8.48) BMI 0.155 0.082 0.607 0.177 Normal body mass 566 (29.77) 625 (32.88) 580 (30.51) 595 (31.28) 596 (31.34) 590 (31.04) 569 (29.93) 604 (31.81) Low body mass 29 (1.53) 22 (1.16) 31 (1.63) 14 (0.74) 20 (1.05) 27 (1.42) 24 (1.26) 23 (1.21) Overweight 828 (43.56) 808 (42.50) 824 (43.35) 819 (43.06) 807 (42.43) 827 (43.50) 807 (42.45) 829 (43.65) Obesity 478 (25.14) 446 (23.46) 466 (24.51) 474 (24.92) 479 (25.18) 457 (24.04) 501 (26.35) 443 (23.33) Central obesity 0.088 0.818 0.780 0.620 No 501 (26.35) 548 (28.83) 508 (26.72) 502 (26.39) 533 (28.02) 525 (27.62) 504 (26.51) 517 (27.22) Yes 1400 (73.65) 1353 (71.17) 1393 (73.28) 1400 (73.61) 1369 (71.98) 1376 (72.38) 1397 (73.49) 1382 (72.78) Smoking status 0.001 0.393 0.003 0.555 No 1472 (77.43) 1384 (72.80) 1377 (72.44) 1354 (71.19) 1405 (73.87) 1323 (69.59) 1349 (70.96) 1364 (71.83) Yes 429 (22.57) 517 (27.20) 524 (27.56) 548 (28.81) 497 (26.13) 578 (30.41) 552 (29.04) 535 (28.17) Drinking status 0.008 0.223 <0.001 0.506 No 1564 (82.27) 1499 (78.85) 1474 (77.54) 1443 (75.87) 1500 (78.86) 1404 (73.86) 1434 (75.43) 1450 (76.36) Yes 337 (17.73) 402 (21.15) 427 (22.46) 459 (24.13) 402 (21.14) 497 (26.14) 467 (24.57) 449 (23.64) Physical activity 0.055 0.002 0.005 0.029 No 303 (15.94) 261 (13.73) 325 (17.10) 255 (13.41) 315 (16.56) 253 (13.31) 263 (13.83) 311 (16.38) Yes 1598 (84.06) 1640 (86.27) 1576 (83.90) 1647 (86.59) 1587 (83.44) 1648 (86.69) 1638 (86.17) 1588 (83.62) Hypertension 0.193 0.808 <0.001 0.821 No 858 (45.13) 898 (47.24) 873 (45.92) 866 (45.53) 814 (42.80) 958 (50.39) 913 (48.03) 919 (48.39) Yes 1043 (54.87) 1003 (52.76) 1028 (54.08) 1036 (54.47) 1088 (57.20) 943 (49.61) 988 (51.97) 980 (51.61) Dyslipidemia 0.822 0.071 0.845 0.035 No 472 (24.83) 478 (25.14) 438 (23.04) 486 (25.55) 479 (25.18) 484 (25.46) 449 (23.62) 505 (26.59) Yes 1429 (75.17) 1423 (74.86) 1463 (76.96) 1416 (74.45) 1423 (74.82) 1417 (74.54) 1452 (76.38) 1394 (73.41) BMI: Body mass index. P value was calculated by chi-square test for categorical variables. 表 4 不同膳食模式居民的人体测量学指标和临床指标分布
Table 4 Distribution of anthropometric measurements and clinical indicators in the lowest (Q1) and highest (Q4) quartiles of each dietary pattern
Variable Animal pattern Vegetative pattern Mixed pattern Traditional pattern Q1 (n=1 901) Q4 (n=1 901) Q1 (n=1 901) Q4 (n=1 902) Q1 (n=1 902) Q4 (n=1 901) Q1 (n=1 901) Q4 (n=1 899) BMI/(kg/m2) 25.73±3.53 25.60±3.59 25.66±3.63 25.80±3.56 25.79±3.64 25.68±3.56 25.86±3.67 25.69±3.55 WC/cm 87.96±10.12 87.51±10.43 88.30±10.38 88.14±10.07 88.13±10.26 87.80±10.23 88.49±10.40 87.66±10.00# SBP/mmHg 135.14±20.26 135.52±19.42 135.00±19.55 135.43±19.95 135.80±19.38 133.78±19.59# 135.08±19.95 134.43±19.89 DBP/mmHg 82.75±11.39 82.70±10.81 82.97±11.12 83.05±11.29 82.94±11.01 82.69±11.39 83.16±11.37 82.79±11.31 TC/(mmol/L) 5.39±1.06 5.34±1.05 5.40±1.05 5.34±1.06 5.34±1.00 5.37±1.08 5.39±1.04 5.35±1.06 HDL-C/(mmol/L) 1.26±0.31 1.28±0.31 1.27±0.32 1.25±0.30# 1.27±0.31 1.26±0.31 1.25±0.31 1.28±0.32# LDL-C/(mmol/L) 3.06±0.87 3.05±0.85 3.08±0.87 3.04±0.86 3.04±0.84 3.08±0.85 3.09±0.87 3.08±0.88 TG/(mmol/L)* 1.44 (1.04-2.07) 1.41 (1.01-1.99) 1.45 (1.04-2.07) 1.43 (1.04-2.06) 1.42 (1.04-2.02) 1.44 (1.04-2.07) 1.45 (1.05-2.11) 1.42 (1.03-2.02) HbA1c/%* 5.70(5.30-6.10) 5.70 (5.30-6.10) 5.70 (5.30-6.10) 5.70 (5.40-6.10) 5.70 (5.30-6.10) 5.70 (5.30-6.10) 5.75 (5.40-6.20) 5.60 (5.30-6.00)# FBG/(mmol/L)* 5.50 (5.10-6.10) 5.50 (5.10-6.10) 5.50 (5.10-6.20) 5.50 (5.10-6.00)# 5.50 (5.10-6.10) 5.50 (5.10-6.00) 5.50 (5.10-6.20) 5.50 (5.10-6.01)# BMI: Body mass index; WC: Waist circumference; SBP: Systolic blood pressure; DBP: Diastolic blood pressure; TC: Total cholesterol; HDL-C: High-density lipoprotein cholesterol; LDL-C: Low-density lipoprotein cholesterol; TG: Triglyceride; HbA1c: Glycated-hemoglobin; FBG: Fasting blood glucose. *TG, HbA1c and FBG were not of normal distribution, and were presented as median (M) and interquartile range (P25-P75). #P<0.05, vs. Q1. 表 5 不同膳食模式与糖尿病关系的多因素logistic回归分析
Table 5 Multivariable adjusted odds ratio (OR) and 95% confidence interval (CI) for diabetes across the quartile categories of dietary patterns
Dietary pattern Model 1# Model 2# Model 3# Animal pattern Q1 1.00 (ref) 1.00 (ref) 1.00 (ref) Q2 1.042 (0.889, 1.222) 1.043 (0.888, 1.226) 1.054 (0.897, 1.239) Q3 1.030 (0.879, 1.209) 1.023 (0.871, 1.202) 1.025 (0.872, 1.205) Q4 1.058 (0.904, 1.237) 1.071 (0.914, 1.255) 1.070 (0.913, 1.255) Ptrend 0.534 0.466 0.489 Vegetative pattern Q1 1.00 (ref) 1.00 (ref) 1.00 (ref) Q2 0.926 (0.791, 1.084) 0.933 (0.796, 1.094) 0.952 (0.811, 1.117) Q3 0.996 (0.851, 1.165) 1.004 (0.857, 1.177) 1.016 (0.866, 1.191) Q4 0.954 (0.815, 1.117) 0.946 (0.807, 1.110) 0.954 (0.813, 1.120) Ptrend 0.780 0.714 0.765 Mixed pattern Q1 1.00 (ref) 1.00 (ref) 1.00 (ref) Q2 1.074 (0.917, 1.258) 1.074 (0.916, 1.260) 1.082 (0.922, 1.270) Q3 1.111 (0.949, 1.301) 1.123 (0.957, 1.317) 1.134 (0.966, 1.331) Q4 1.096 (0.933, 1.286) 1.101 (0.936, 1.295) 1.109 (0.942, 1.305) Ptrend 0.228 0.197 0.170 Traditional pattern Q1 1.00 (ref) 1.00 (ref) 1.00 (ref) Q2 0.861 (0.737, 1.005) 0.862 (0.737, 1.008) 0.863 (0.737, 1.010) Q3 0.808 (0.691, 0.945) 0.837 (0.714, 0.980) 0.843 (0.719, 0.988) Q4 0.789 (0.674, 0.925) 0.804 (0.685, 0.944) 0.810 (0.690, 0.952) Ptrend 0.002 0.008 0.011 Model 1: Adjusted for age, gender, education level, occupation, monthly income, smoking and drinking status, and physical activity; Model 2: Additionally adjusted for BMI; Model 3: Further adjusted for occurrence of hypertension and hyperlipidemia. # Data are presented as OR (95%CI). -
[1] PATEL C J, CHEN R, KODAMA K, et al. Systematic identification of interaction effects between genome-and environment-wide associations in type 2 diabetes mellitus. Hum Genet,2013,132(5): 495–508. DOI: 10.1007/s00439-012-1258-z
[2] LI Y, TENG D, SHI X, et al. Prevalence of diabetes recorded in mainland China using 2018 diagnostic criteria from the American Diabetes Association: National cross sectional study. BMJ, 2020, 369: m997[2020-05-27]. https://doi.org/10.1136/bmj.m997.
[3] BRAGG F, HOLMES M V, IONA A, et al. Association between diabetes and cause-specific mortality in rural and urban areas of China. JAMA,2017,317(3): 280–289. DOI: 10.1001/jama.2016.19720
[4] MATHE N, PISA P T, JOHNSON J A, et al. Dietary patterns in adults with type 2 diabetes predict cardiometabolic risk factors. Can J Diabetes,2016,40(4): 296–303. DOI: 10.1016/j.jcjd.2015.11.006
[5] 朱佳妮, 齐心月, 谭杨, 等. 中老年人群高尿酸血症与糖脂代谢紊乱及膳食因素的关系研究. 四川大学学报(医学版),2016,47(1): 68–72. [6] ZINÖCKER M K, LINDSETH I A. The western diet-microbiome-host interaction and its role in metabolic disease. Nutrients, 2018, 10(3): 365[2020-05-27]. https://doi.org/10.3390/nu10030365.
[7] 朱文龙, 关颖, 徐春泽, 等. 上海市松江地区40岁及以上居民膳食模式对2型糖尿病患病影响的研究. 中华流行病学杂志,2020,41(4): 508–513. DOI: 10.3760/cma.j.cn112338-20190702-00486 [8] LIU X, MAO Z, LI Y, et al. Cohort profile: The Henan rural cohort: A prospective study of chronic non-communicable diseases. Int J Epidemiol,2019,48(6): 1756–1756j. DOI: 10.1093/ije/dyz039
[9] 何美安, 张策, 朱江, 等. 东风-同济队列研究: 研究方法及调查对象基线和第一次随访特征. 中华流行病学杂志,2016,37(4): 480–485. DOI: 10.3760/cma.j.issn.0254-6450.2016.04.008 [10] 王红美. 中国六城市医生吸烟行为现状研究. 北京: 中国疾病预防控制中心, 2005. [11] 王倩倩. 中国人群饮酒与肿瘤死亡和总死亡关系的前瞻性队列研究及补充omega-3脂肪酸改善血管内皮功能的临床研究荟萃分析. 北京: 北京协和医学院(清华大学医学部)&中国医学科学院, 2012. [12] 周俊梅, 罗新萍, 王书, 等. 河南省农村地区居民血脂异常患病率及其危险因素调查. 中华预防医学杂志,2016,50(9): 799–805. DOI: 10.3760/cma.j.issn.0253-9624.2016.09.010 [13] 中华人民共和国卫生和计划生育委员会. WS/T 428-2013中华人民共和国卫生行业标准《成人体重判定》. 北京: 中国标准出版社, 2013. [14] 中国高血压防治指南修订委员会, 高血压联盟, 中华医学会心血管病学分会中国医师协会高血压专业委员会, 等. 中国高血压防治指南(2018年修订版). 中国心血管杂志,2019,24(1): 24–56. DOI: 10.3969/j.issn.1007-5410.2019.01.002 [15] 中华医学会糖尿病学分会. 中国2型糖尿病防治指南(2017年版). 中华糖尿病杂志,2018,10(1): 4–67. DOI: 10.3760/cma.j.issn.1674-5809.2018.01.003 [16] 中国成人血脂异常防治指南修订联合委员会. 中国成人血脂异常防治指南(2016年修订版). 中华心血管病杂志,2016,44(10): 833–53. DOI: 10.3760/cma.j.issn.0253-3758.2016.10.005 [17] ZHEN S, MA Y, ZHAO Z, et al. Dietary pattern is associated with obesity in Chinese children and adolescents: data from China Health and Nutrition Survey (CHNS). Nutr J, 2018, 17(1): 68[2020-05-27]. 10.1186/s12937-018-0372-8">https://nutritionj.biomedcentral.com/articles/ 10.1186/s12937-018-0372-8. doi: 10.1186/s12937-018-0372-8.
[18] YANG F, QIAN D, CHEN J, et al. Prevalence, awareness, treatment and control of diabetes mellitus in rural China: Results from Shandong Province. Diabet Med,2016,33(4): 454–458. DOI: 10.1111/dme.12842
[19] WANG R, ZHANG P, LV X, et al. Situation of diabetes and related disease surveillance in rural areas of Jilin province, Northeast China. Int J Environ Res Public Health, 2016, 13(6): 538[2020-05-27]. https://doi.org/10.3390/ijerph13060538.
[20] RUAN Y, YAN Q H, XU J Y, et al. Epidemiology of diabetes in adults aged 35 and older from Shanghai, China. Biomed Environ Sci,2016,29(6): 408–416.
[21] LIU X, LI Y, GUO Y, et al. The burden, management rates and influencing factors of high blood pressure in a Chinese rural population: The Rural Diabetes, Obesity and Lifestyle (RuralDiab) study. J Hum Hypertens,2018,32(3): 236–246. DOI: 10.1038/s41371-018-0039-0
[22] HULLAR M A J, FU B C. Diet, the gut microbiome, and epigenetics. Cancer J,2014,20(3): 170–175. DOI: 10.1097/PPO.0000000000000053
[23] ARCHUNDIA HERRERA M C, SUBHAN F B, CHAN C B. Dietary patterns and cardiovascular disease risk in people with type 2 diabetes. Curr Obes Rep,2017,6(4): 405–413. DOI: 10.1007/s13679-017-0284-5
[24] 束莉, 陆晓宇, 李欣潼. 2014−2015年蚌埠市中老年居民血脂异常、高血压与膳食模式的关系. 卫生研究,2018,47(4): 554–561. [25] 余方琳, 叶莺, 严延生. 福建省居民膳食模式及基于分类树模型的糖尿病影响因素分析. 中华流行病学杂志,2017,38(5): 602–610. DOI: 10.3760/cma.j.issn.0254-6450.2017.05.009 [26] MICHA R, WALLACE S K, MOZAFFARIAN D. Red and processed meat consumption and risk of incident coronary heart disease, stroke, and diabetes mellitus: A systematic review and meta-analysis. Circulation,2010,121(21): 2271–2283. DOI: 10.1161/CIRCULATIONAHA.109.924977
[27] ZENG L, RUAN M, LIU J, et al. Trends in processed meat, unprocessed red meat, poultry, and fish consumption in the United States, 1999−2016. J Acad Nutr Diet, 2019, 119(7): 1085-1098. e12[2020-05-27]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6689198/. doi: 10.1016/j.jand.2019.04.004.
[28] IBSEN D B, WARBERG C K, WÜRTZ A M L, et al. Substitution of red meat with poultry or fish and risk of type 2 diabetes: A Danish cohort study. Eur J Nutr,2019,58(7): 2705–2712. DOI: 10.1007/s00394-018-1820-0
[29] MA Q, LI Y, LI P, et al. Research progress in the relationship between type 2 diabetes mellitus and intestinal flora. Biomed Pharmacother, 2019, 117: 109138[2020-05-27]. https://doi.org/10.1016/j.biopha.2019.109138.
[30] KIMURA I, OZAWA K, INOUE D, et al. The gut microbiota suppresses insulin-mediated fat accumulation via the short-chain fatty acid receptor GPR43. Nat Commun, 2013, 4: 1829[2020-05-27]. https://www.nature.com/articles/ncomms2852. doi: 10.1038/ncomms2852.
[31] HE Y, WU W, ZHENG H M, et al. Regional variation limits applications of healthy gut microbiome reference ranges and disease models. Nat Med,2018,24(10): 1532–1535. DOI: 10.1038/s41591-018-0164-x
[32] DAS U N. Vitamin C for type 2 diabetes mellitus and hypertension. Arch Med Res,2019,50(2): 11–14. DOI: 10.1016/j.arcmed.2019.05.004
[33] GUPTA S, SHARMA T K, KAUSHIK G G, et al. Vitamin E supplementation may ameliorate oxidative stress in type 1 diabetes mellitus patients. Clin Lab,2011,57(5/6): 379–386.
[34] TANG J, WAN Y, ZHAO M, et al. Legume and soy intake and risk of type 2 diabetes: A systematic review and meta-analysis of prospective cohort studies. Am J Clin Nutr,2020,111(3): 677–688. DOI: 10.1093/ajcn/nqz338
[35] KATAGIRI R, SAWADA N, GOTO A, et al. Association of soy and fermented soy product intake with total and cause specific mortality: Prospective cohort study. BMJ, 2020, 368: m34[2020-05-27]. https://doi.org/10.1136/bmj.m34.
[36] JANG J, SHIN M J, KIM O Y, et al. Longitudinal association between egg consumption and the risk of cardiovascular disease: Interaction with type 2 diabetes mellitus. Nutr Diabetes, 2018, 8(1): 20[2020-05-27]. https://www.nature.com/articles/s41387-018-0033-1. doi: 10.1038/s41387-018-0033-1.
[37] REN J S, KAMANGAR F, FORMAN D, et al. Pickled food and risk of gastric cancer—A systematic review and meta-analysis of English and Chinese literature. Cancer Epidemiol Biomarkers Prev,2012,21(6): 905–915. DOI: 10.1158/1055-9965.EPI-12-0202
[38] RADZEVICIENE L, OSTRAUSKAS R. Adding salt to meals as a risk factor of type 2 diabetes mellitus: A case-control study. Nutrients, 2017, 9(1): 67[2020-05-27]. https://doi.org/10.3390/nu9010067.
[39] JAACKS L M, CRANDELL J, MENDEZ M A, et al. Dietary patterns associated with HbA1c and LDL cholesterol among individuals with type 1 diabetes in China. J Diabetes Complicat,2015,29(3): 343–349. DOI: 10.1016/j.jdiacomp.2014.12.014
[40] HERNÁNDEZ-ALONSO P, CAMACHO-BARCIA L, BULLÓ M, et al. Nuts and dried fruits: An update of their beneficial effects on type 2 diabetes. Nutrients, 2017, 9(7): 673[2020-05-27]. https://doi.org/10.3390/nu9070673.
[41] ALVAREZ-BUENO C, CAVERO-REDONDO I, MARTINEZ-VIZCAINO V, et al. Effects of milk and dairy product consumption on type 2 diabetes: Overview of systematic reviews and meta-analyses. Adv Nutr,2019,10(Suppl 2): S154–S163. DOI: 10.1093/advances/nmy107
-
期刊类型引用(1)
1. 潘艳艳,王燕,李明,杨茜,孙瑜,朱媛媛,邵子瑜. 合肥市孕妇孕早期膳食模式与6月龄婴儿神经心理发育的分析. 中国食物与营养. 2024(01): 68-73 . 百度学术
其他类型引用(1)
计量
- 文章访问数: 765
- HTML全文浏览量: 355
- PDF下载量: 42
- 被引次数: 2