四面体框架核酸材料与人类健康
Tetrahedral Framework Nucleic Acids and Human Health
-
摘要: 近年来,四面体框架核酸材料由于良好的机械、化学、生物性能,成为了DNA纳米材料中的热点话题。通过利用四面体框架核酸材料的诸多优势,不同尺寸、不同修饰方式的DNA四面体被设计出来,在再生医学、生物传感器以及肿瘤治疗等多个领域得以应用,从而促进人类健康。该综述对目前四面体框架核酸材料在人类健康相关领域的研究进展进行了总结,并提出了四面体框架核酸材料在未来临床应用的过程中将会面临的挑战。Abstract: In recent years, tetrahedral framework nucleic acids (tFNAs) have become a hot topic in the field of DNA nanomaterials due to their excellent mechanical, chemical and biological properties. By taking advantage of these merits, tFNAs of varied sizes and modification methods have been designed and applied in diverse fields such as regenerative medicine, biosensors, and tumor treatment to promote human health. This paper reviews the current research progress of tFNAs in human health-related fields, and the future challenges in the clinical applications of tFNAs.
-
自从SEEMAN[1]在1982年设计出第一个四臂核酸连接点以来,DNA折纸技术得以迅速的发展和广泛的应用[2]。基于沃森-克里克(Watson-Crick)碱基对杂交的DNA折纸技术,可通过改变碱基序列来合成不同形态和大小的自组装DNA纳米结构[3]。DNA纳米结构的发展经历了4个阶段[3],第一代的2D DNA瓦片,第二代的刚性DNA双交叉结构[4- 5],再到第三代的3D DNA纳米结构,最后到第四代任意形态的DNA纳米结构。其中第三代比较典型的四面体框架核酸结构(tetrahedral framework nucleic acids,tFNAs)因为其优良的机械、化学、生物性能而逐渐受到广泛关注,在生物医学领域展现出不可忽视的潜力[6]。
tFNAs由4个等距的单链DNA组成。根据Watson-Crick杂交的规则,每个单链DNA包含3个区块,可以分别与其他三链杂交形成四面体的三维结构(图1),具有不同于传统DNA分子的特性:①合成方法简单[3]。②机械强度高[7]。③相对稳定。tFNAs具有血清相对稳定性[8]。④可编辑性,tFNAs可通过静电吸附、序列延伸、序列互补等多种方式与小分子物质、多肽、核酸等连接,作为载体发挥作用[2,9]。⑤良好生物相容性。⑥易通过细胞膜。tFNAs可以被细胞通过小窝蛋白介导的内吞作用吸收,然后以微管依赖的方式转运到溶酶体中[10- 11]。⑦可调控生物学行为[12]。基于以上优势,tFNAs已成功应用于干细胞、生物传感器、肿瘤治疗等众多领域,与人类健康息息相关。本综述将对目前tFNAs在人类健康相关领域的研究进展进行总结。
1. tFNAs在再生医学中的应用
干细胞是负责器官和组织系统发育与再生的生物组织单位,能够更新并分化为多种细胞谱系,在再生医学中具有特殊的意义[13-14]。但干细胞研究的局限之一是应用所需的药物或材料的生物相容性差和生物利用度低[15-16],tFNAs为解决这一问题带来了新的思路。许多研究已经证明利用tFNAs可促进多种干细胞的生物学行为,包括增殖、迁移、分化[17-19],成为促进骨、神经、牙齿再生的理想备选材料。
间充质干细胞(mesenchymal stem cell,MSCs)由于巨大的再生潜力,受到了科学界的日益关注[20-21]。牙周膜干细胞(periodontal ligament stem cells,PDLSCs)和脂肪干细胞(adipose-derived stem cells,ADSCs),作为间充质干细胞中重要的两种亚型,可以在条件诱导下分化出骨组织,被认为是骨组织再生的理想候选干细胞[22-24]。我们的研究表明[17-18],将250 nmol/L tFNAs分别加入这两种干细胞中孵育,两种细胞出现了相似的结果,通过检查24 h细胞周期发现S期的细胞数量有所增加,G1期的细胞数量有所减少,细胞增殖能力增强。同时,胞内成骨特异性基因和蛋白表达也都有所增加,成骨分化的早期标记碱性磷酸酶(alkaline phosphatase,ALP)[25]、成骨分化的晚期标记骨桥蛋白(osteopontin,OPN)[26]以及编码参与成骨分化的关键转录因子RUNX2的表达都成倍增加[27]。有趣的是,两种细胞中细胞内的β-连环蛋白、Lef-1以及细胞周期蛋白D也均有所上调,这表明tFNAs通过影响经典的Wnt/β-连环蛋白信号通路,进而与Lef-1相互作用,影响靶基因(如RUNX2
)的表达,最终促进MSCs的增殖和成骨向分化[28-29]。 tFNAs对干细胞的促进能力同样在神经干细胞(neural stem cells,NSCs)和牙髓干细胞(dental pulp stem cells,DPSCs)中得以验证。有研究表示[30-31]在NSCs中加入250 nmol/L tFNAs孵育培养后,实验组细胞显著增殖,也出现类似上述的细胞周期改变,同时神经元的标志物β-Ⅲ-微管蛋白的mRNA及蛋白质含量显著增多,由此可知,tFNAs能有效促进NSCs的自我更新和分化。在另外一项研究中[19],tFNAs处理DPSCs后,DPSCs细胞周期改变而且重要的牙源性标记物牙本质涎磷蛋白的表达上调,这表明tFNAs同样具有促进DPSCs增殖和牙源性分化的潜力。这一变化被认为与Notch信号通路有关,因为在用tFNAs处理后发现,信号通路的关键调节因子Notch1、Hes1及Hey1的表达水平增加[32]。
2. tFNAs在生物传感器中的应用
癌症的早期诊断毫无疑问是保障人类健康必须要解决的问题。但目前对肿瘤标志物的检测仅可用于一般诊断,尚不能准确评估癌症的分期或预后[33]。因此,同时检测DNA(遗传水平)、RNA(转录水平)和蛋白质(表达水平)的能力将大大提高癌症诊断的准确性[34]。
生物传感器是将生物信号转换为可记录信号的工具[35],具有高特异性、快速分析、高精度和低成本的优点,已作为一种早期诊断癌症的替代方法,受到人们的关注。纳米生物传感器近年来发展迅速,然而多数纳米生物传感器因密度过高而导致底物分子的团聚,最终降低其与生物传感器的结合效率[36]。因此,纳米生物传感器必须增加与底物分子接触的可能性,同时还要保持生物传感器的均匀分散[37]。
FENG等[38]构建了一个以tFNAs为核心的通用生物传感平台。在修改tFNAs之后,生物传感器可以以不同的方式黏附到金电极表面。tFNAs的四面体空间构象可确保生物传感器分子的均匀分散,从而实现底物与生物传感器的有效结合。尽管目前还有其他一些表面修饰方法可以使生物传感器均匀分散,但其他方法需要再次填充以将生物传感器固定在金电极的表面上,而tFNAs修饰仅需一步[39]。此外,一些学者发现[40]与目标序列混合时四面体结构的探针可实现至少80%的杂交效率,表明由tFNAs组成的生物传感器显示出更高的检测灵敏度。
由tFNAs组成的生物传感器可以检测多种类型的物质,包括核酸、蛋白质、小分子以及细胞等。一项研究[41]将tFNAs固定在金电极表面并在tFNAs顶点处修饰捕获探针后,通过捕获探针与DNA靶序列的特异性结合来实现检测目的。靶序列还可以与用生物素修饰的报告探针结合,从而形成“三明治”结构。随后,抗生物素蛋白-辣根过氧化物酶结合物可以特异性结合到报告探针上,并催化过氧化氢的氧化还原反应,从而产生定量的电化学信号便于检测[39]。
tFNAs构成的“三明治”生物传感器还可以用于检测抗原和肿瘤细胞。如上所述,将tFNAs的3个顶点固定在金电极表面上并将炔基基团修饰的DNA探针附着在第4个顶点上之后,可以通过化学键将抗体与tFNAs偶联。同样,用抗生物素蛋白-辣根过氧化物酶修饰的抗体可以用作报告探针,使用上述夹心结构进行抗原检测[42]。类似地,tFNAs检测肿瘤细胞是基于肿瘤细胞膜表面的特定标志物与生物素修饰的适配体之间的结合,适配体结合抗生物素蛋白-辣根过氧化物酶,由氧化还原反应产生的电化学信号可检测肿瘤细胞[43-44]。
3. tFNAs在肿瘤治疗中的应用
尽管紫杉醇(paclitaxel,PTX)、阿霉素等传统的癌症化疗药物具有强大的抗癌功效,但选择性差、摄取率低和不良反应严重等问题影响着患者的生活质量[45],而且这些药物的广泛使用还导致了肿瘤细胞耐药性的出现[46]。因此,精确的靶向治疗对抗击肿瘤必不可少。
鉴于tFNAs的可编辑性和相对稳定性,化学治疗药物可通过静电吸附、序列延伸、序列互补等多种方式与tFNAs结合形成复合物[9],复合物通过小窝蛋白介导的胞吞作用被细胞吸收,因此,tFNAs可作为载体实现肿瘤细胞的靶向杀伤并增加化学药物的稳定性和入胞性能。与其他载体相比,tFNAs具有更好的生物安全性,更低的生物毒性和更高的运输效率。同时,携带多种药物的能力也已成为tFNAs的特殊优势之一[47-49]。
MA等[48]在tFNAs上特异性锚定DNA适配体即抗HER2适体(anti-HER2 aptamer,HApt)构建了一种基于tFNAs的智能纳米机器人。这种DNA纳米机器人可以靶向HER2阳性的乳腺癌细胞,并特异性诱导膜蛋白HER2的溶酶体降解。将DNA纳米机器人注射到小鼠模型中发现tFNAs的存在增强了HApt的稳定性并延长了其血液循环时间,因此可以更高效率地驱动HER2溶酶体降解。HER2-HApt-tFNAs复合物的形成导致溶酶体中的HER2介导的内吞作用和消化,这有效地减少了细胞表面的HER2数量。通过HApt-tFNAs增强的HER2消化进一步诱导肿瘤细胞凋亡。因此,这种新颖的DNA纳米机器人为精准治疗乳腺癌提供了新的思路。
另一项研究表明[50-51],多肽适配体修饰的tFNAs也可以解决靶向性问题。肿瘤穿透肽(tumor-penetrating peptide,TPP)是一种肽适体[52],可特异性结合在U87MG人神经胶质瘤细胞表面上高表达Neuropilin-1受体。将TPP连接到tFNAs的其中一个顶点上以形成TPP-tFNAs复合物,然后用荧光染料修饰TPP-tFNAs、tFNAs和双链DNA(double strand DNA,dsDNA),并与U87MG细胞一起孵育。dsDNA在4 h后几乎完全降解,在6 h后,TPP-tFNAs组细胞的胞浆内荧光明显强于tFNAs组细胞。这一发现表明,TPP-tFNAs复合物可以大大增强U87MG细胞对TPP的摄取效率,并增强TPP的稳定性。因此,TPP-tFNAs对U87MG细胞的抑制作用也明显大于游离tFNAs和dsDNA。
除了增加靶向适配体稳定性外,tFNAs还可以解决传统化疗药物的耐药性问题。PTX是一种传统化疗药物,对多种肿瘤细胞具有杀伤作用。然而,由于肿瘤的耐药性,其效果仍然有待加强[53]。LEE等[54]发现在A549人肺癌细胞中添加PTX或PTX-tFNAs复合物48 h后,PTX仅导致10%的细胞增殖抑制,表明细胞已经产生耐药性。而在耐药细胞A549中加入相同浓度的PTX-tFNAs则产生相当大的杀伤作用,证明tFNAs成功逆转了该细胞的耐药性。同时该研究证明tFNAs介导的耐药性逆转的机制与P-糖蛋白和Mdr1基因表达的下调有关。这表明tFNAs在逆转肿瘤细胞的耐药性方面具有广阔的应用前景,并且可能是解决肿瘤耐药性问题的关键。
4. 挑战与展望
在这篇综述中,我们简要介绍了tFNAs近年来在再生医学、生物传感器以及肿瘤治疗三大方面的应用,体现出tFNAs在人类健康相关领域中具有极大的应用前景。然而,虽然tFNAs具有很多的优势与较大的应用潜力,但tFNAs在临床应用上仍然存在着一些问题。目前tFNAs在体内循环的稳定性成为了一大挑战。虽然tFNAs相较于dsDNA更稳定,但是仍无法满足在体内长时间应用的要求。同时,tFNAs作为载体目前只能搭载小分子物质如多肽、寡核苷酸等,对于大分子的长链基因仍然无法结合运输。这些都是未来需要解决的难题,但我们不可否认的是,tFNAs已经是目前最为理想的DNA纳米结构之一。tFNAs目前在人类健康相关领域中较为满意的表现,意味tFNAs有着更大的应用价值等待我们去探索。
* * *
利益冲突 作者声明不存在利益冲突
-
[1] SEEMAN N C. Nucleic acid junctions and lattices. J Theor Biol,1982,99(2): 237–247. DOI: 10.1016/0022-5193(82)90002-9
[2] ZHANG X, LIU N, ZHOU M, et al. The application of tetrahedral framework nucleic acids as a drug carrier in biomedicine fields. Curr Stem Cell Res Ther,2021,16(1): 48–56. DOI: 10.2174/1574888x15666200422103415
[3] LI S, TIAN T, ZHANG T, et al. Advances in biological applications of self-assembled DNA tetrahedral nanostructures. Mater Today,2019,24: 57–68. DOI: 10.1016/j.mattod.2018.08.002
[4] CHEN J, SEEMAN N C. Synthesis from DNA of a molecule with the connectivity of a cube. Nature,1991,350(6319): 631–633. DOI: 10.1038/350631a0
[5] CHURCHILL M E, TULLIUS T D, KALLENBACH N R, et al. A Holliday recombination intermediate is twofold symmetric. Proc Natl Acad Sci U S A,1988,85(13): 4653–4656. DOI: 10.1073/pnas.85.13.4653
[6] ZHANG T, CUI W, TIAN T, et al. Progress in biomedical applications of tetrahedral framework nucleic acid-based functional systems. ACS Appl Mater Interfaces,2020,12(42): 47115–47126. DOI: 10.1021/acsami.0c13806
[7] GOODMAN R P, SCHAAP I A T, TARDIN C F, et al. Rapid chiral assembly of rigid DNA building blocks for molecular nanofabrication. Science,2005,310(5754): 1661–1665. DOI: 10.1126/science.1120367
[8] ZAGOROVSKY K, CHOU L Y T, CHAN W C W. Controlling DNA-nanoparticle serum interactions. Proc Natl Acad Sci U S A,2016,113(48): 13600–13605. DOI: 10.1073/pnas.1610028113
[9] LIU Y, LIU Z, CUI W, et al. Tetrahedral framework nucleic acids as an advanced drug delivery system for oligonucleotide drugs. APL Materials, 2020, 8(10): 100701[2021-03-26]. https://doi.org/10.1063/5.0025211.
[10] CORTEZ M A, GODBEY W T, FANG Y, et al. The synthesis of cyclic poly (ethylene imine) and exact linear analogues: an evaluation of gene delivery comparing polymer architectures. J Am Chem Soc,2015,137(20): 6541–6549. DOI: 10.1021/jacs.5b00980
[11] LI J, PEI H, ZHU B, et al. Self-assembled multivalent DNA nanostructures for noninvasive intracellular delivery of immunostimulatory CpG oligonucleotides. ACS Nano,2011,5(11): 8783–8789. DOI: 10.1021/nn202774x
[12] ZHANG T, TIAN T, ZHOU R, et al. Design, fabrication and applications of tetrahedral DNA nanostructure-based multifunctional complexes in drug delivery and biomedical treatment. Nat Protoc,2020,15(8): 2728–2757. DOI: 10.1038/s41596-020-0355-z
[13] BACAKOVA L, ZARUBOVA J, TRAVNICKOVA M, et al. Stem cells: their source, potency and use in regenerative therapies with focus on adipose-derived stem cells—A review. Biotechnol Adv,2018,36(4): 1111–1126. DOI: 10.1016/j.biotechadv.2018.03.011
[14] COSSU G, BIRCHALL M, BROWN T, et al. Lancet commission: stem cells and regenerative medicine. Lancet,2018,391(10123): 883–910. DOI: 10.1016/s0140-6736(17)31366-1
[15] CORREA D, SOMOZA R A, LIN P, et al. Sequential exposure to fibroblast growth factors (FGF) 2, 9 and 18 enhances hMSC chondrogenic differentiation. Osteoarthr Cartilage,2015,23(3): 443–453. DOI: 10.1016/j.joca.2014.11.013
[16] LEVORSON E J, SANTORO M, KASPER F K, et al. Direct and indirect co-culture of chondrocytes and mesenchymal stem cells for the generation of polymer/extracellular matrix hybrid constructs. Acta Biomater,2014,10(5): 1824–1835. DOI: 10.1016/j.actbio.2013.12.026
[17] SHAO X R, LIN S Y, PENG Q, et al. Effect of tetrahedral DNA nanostructures on osteogenic differentiation of mesenchymal stem cells via activation of the Wnt/β-catenin signaling pathway. Nanomedicine,2017,13(5): 1809–1819. DOI: 10.1016/j.nano.2017.02.011
[18] ZHOU M, LIU N, ZHANG Q, et al. Effect of tetrahedral DNA nanostructures on proliferation and osteogenic differentiation of human periodontal ligament stem cells. Cell Proliferat, 2019, 52(3): e12566[2021-03-26]. https://doi.org/10.1111/cpr.12566.
[19] ZHOU M, LIU N X, SHI S R, et al. Effect of tetrahedral DNA nanostructures on proliferation and osteo/odontogenic differentiation of dental pulp stem cells via activation of the notch signaling pathway. Nanomedicine,2018,14(4): 1227–1236. DOI: 10.1016/j.nano.2018.02.004
[20] 林云锋, 李松航. DNA折纸技术在干细胞领域应用的研究进展. 国际口腔医学杂志,2018,45(3): 249–254. DOI: 10.7518/gjkq.2018.03.001 [21] TATULLO M, CODISPOTI B, PACIFICI A, et al. Potential use of human periapical cyst-mesenchymal stem cells (hPCy-MSCs) as a novel stem cell source for regenerative medicine applications. Front Cell Dev Biol, 2017, 5: 103[2021-03-26]. https://doi.org/10.3389/fcell.2017.00103.
[22] SEO B M, MIURA M, GRONTHOS S, et al. Investigation of multipotent postnatal stem cells from human periodontal ligament. Lancet,2004,364(9429): 149–155. DOI: 10.1016/s0140-6736(04)16627-0
[23] XU J, WANG W, KAPILA Y, et al. Multiple differentiation capacity of STRO-1+/CD146+ PDL mesenchymal progenitor cells. Stem Cells Development,2009,18(3): 487–496. DOI: 10.1089/scd.2008.0113
[24] LIU C, ZHU C, LI J, et al. The effect of the fibre orientation of electrospun scaffolds on the matrix production of rabbit annulus fibrosus-derived stem cells. Bone Res, 2015, 3: 15012[2021-03-26]. https://doi.org/10.1038/boneres.2015.12.
[25] VIMALRAJ S. Alkaline phosphatase: Structure, expression and its function in bone mineralization. Gene, 2020, 754: 144855[2021-03-26]. https://doi.org/10.1016/j.gene.2020.144855.
[26] PANG X, GONG K, ZHANG X, et al. Osteopontin as a multifaceted driver of bone metastasis and drug resistance. Pharmacol Res,2019,144: 235–244. DOI: 10.1016/j.phrs.2019.04.030
[27] KOMORI T. Regulation of proliferation, differentiation and functions of osteoblasts by Runx2. Int J Mol Sci, 2019, 20(7): 1694[2021-03-26]. https://doi.org/10.3390/ijms20071694.
[28] AHMADZADEH A, NOROZI F, SHAHRABI S, et al. Wnt/β-catenin signaling in bone marrow niche. Cell Tissue Res,2016,363(2): 321–335. DOI: 10.1007/s00441-015-2300-y
[29] MACDONALD B T, HE X. Frizzled and LRP5/6 receptors for Wnt/β-catenin signaling. Cold Spring Harb Perspect Biol, 2012, 4(12): a007880[2021-03-26]. https://doi.org/10.1101/cshperspect.a007880.
[30] MA W, SHAO X, ZHAO D, et al. Self-assembled tetrahedral DNA nanostructures promote neural stem cell proliferation and neuronal differentiation. ACS Appl Mater Interfaces,2018,10(9): 7892–7900. DOI: 10.1021/acsami.8b00833
[31] MA W, XIE X, SHAO X, et al. Tetrahedral DNA nanostructures facilitate neural stem cell migration via activating RHOA/ROCK2 signalling pathway. Cell Proliferat, 2018, 51(6): e12503[2021-03-26]. https://doi.org/10.1111/cpr.12503.
[32] WALKER J V, ZHUANG H, SINGER D, et al. Transit amplifying cells coordinate mouse incisor mesenchymal stem cell activation. Nat Commun,2019,10(1): 3596–3614. DOI: 10.1038/s41467-019-11611-0
[33] BONVENTRE J V, VAIDYA V S, SCHMOUDER R, et al. Next-generation biomarkers for detecting kidney toxicity. Nat Biotechnol,2010,28(5): 436–440. DOI: 10.1038/nbt0510-436
[34] DAS J, CEDERQUIST K B, ZARAGOZA A A, et al. An ultrasensitive universal detector based on neutralizer displacement. Nat Chem,2012,4(8): 642–648. DOI: 10.1038/nchem.1367
[35] ZHENG J, YANG R, SHI M, et al. Rationally designed molecular beacons for bioanalytical and biomedical applications. Chem Soc Rev,2015,44(10): 3036–3055. DOI: 10.1039/c5cs00020c
[36] LIN M, WANG J, ZHOU G, et al. Programmable engineering of a biosensing interface with tetrahedral DNA nanostructures for ultrasensitive DNA detection. Angew Chem Int Edit,2015,54(7): 2151–2155. DOI: 10.1002/anie.201410720
[37] LI Z, ZHAO B, WANG D, et al. DNA nanostructure-based universal microarray platform for high-efficiency multiplex bioanalysis in biofluids. ACS Appl Mater Interfaces,2014,6(20): 17944–17953. DOI: 10.1021/am5047735
[38] FENG Q M, ZHOU Z, LI M X, et al. DNA tetrahedral scaffolds-based platform for the construction of electrochemiluminescence biosensor. Biosens Bioelectron,2017,90: 251–257. DOI: 10.1016/j.bios.2016.11.060
[39] LIN M, WEN Y, LI L, et al. Target-responsive, DNA nanostructure-based E-DNA sensor for microRNA analysis. Anal Chem,2014,86(5): 2285–2288. DOI: 10.1021/ac500251t
[40] WEN Y, PEI H, SHEN Y, et al. DNA Nanostructure-based Interfacial engineering for PCR-free ultrasensitive electrochemical analysis of microRNA. Sci Rep, 2012, 2: 867[2021-03-26]. https://doi.org/10.1038/srep00867.
[41] YANG F, ZUO X, LI Z, et al. A bubble-mediated intelligent microscale electrochemical device for single-step quantitative bioassays. Adv Mater,2014,26(27): 4671–4676. DOI: 10.1002/adma.201400451
[42] WANG Q, CHEN M, ZHANG H, et al. Enhanced electrochemiluminescence of RuSi nanoparticles for ultrasensitive detection of ochratoxin A by energy transfer with CdTe quantum dots. Biosens Bioelectron,2016,79: 561–567. DOI: 10.1016/j.bios.2015.12.098
[43] LIU X, JIANG H, LEI J, et al. Anodic electrochemiluminescence of CdTe quantum dots and its energy transfer for detection of catechol derivatives. Anal Chem,2007,79(21): 8055–8060. DOI: 10.1021/ac070927i
[44] PUNATHIL T, TOLLEFSBOL T O, KATIYAR S K. EGCG inhibits mammary cancer cell migration through inhibition of nitric oxide synthase and guanylate cyclase. Biochem Biophys Res Commun,2008,375(1): 162–167. DOI: 10.1016/j.bbrc.2008.07.157
[45] YU J, WANG Y, ZHOU S, et al. Remote loading paclitaxel-doxorubicin prodrug into liposomes for cancer combination therapy. Acta Pharm Sin B,2020,10(9): 1730–1740. DOI: 10.1016/j.apsb.2020.04.011
[46] CUI H, ARNST K, MILLER D D, et al. Recent advances in elucidating paclitaxel resistance mechanisms in non-small cell lung cancer and strategies to overcome drug resistance. Curr Med Chem,2020,27(39): 6573–6595. DOI: 10.2174/0929867326666191016113631
[47] ZHAN Y, MA W, ZHANG Y, et al. Diversity of DNA nanostructures and applications in oncotherapy. Biotechnol J, 2020, 15(1): e1900094[2021-03-26]. https://doi.org/10.1002/biot.201900094.
[48] MA W, ZHAN Y, ZHANG Y, et al. An intelligent DNA nanorobot with in vitro enhanced protein lysosomal degradation of HER2. Nano Lett,2019,19(7): 4505–4517. DOI: 10.1021/acs.nanolett.9b01320
[49] ZHAN Y, MA W, ZHANG Y, et al. DNA-based nanomedicine with targeting and enhancement of therapeutic efficacy of breast cancer cells. ACS Appl Mater Interfaces,2019,11(17): 15354–15365. DOI: 10.1021/acsami.9b03449
[50] XIA Z, WANG P, LIU X, et al. Tumor-penetrating peptide-modified DNA tetrahedron for targeting drug delivery. Biochem,2016,55(9): 1326–1331. DOI: 10.1021/acs.biochem.5b01181
[51] OUYANG X, LI J, LIU H, et al. Rolling circle amplification-based DNA origami nanostructrures for intracellular delivery of immunostimulatory drugs. Small,2013,9(18): 3082–3087. DOI: 10.1002/smll.201300458
[52] RUOSLAHTI E. Tumor penetrating peptides for improved drug delivery. Adv Drug Deliver Rev,2017,110: 3–12. DOI: 10.1016/j.addr.2016.03.008
[53] YIN J, LANG T, CUN D, et al. pH-sensitive nano-complexes overcome drug resistance and inhibit metastasis of breast cancer by silencing Akt expression. Theranostics,2017,7(17): 4204–4216. DOI: 10.7150/thno.21516
[54] LEE S Y, KIM K R, BANG D, et al. Biophysical and chemical handles to control the size of DNA nanoparticles produced by rolling circle amplification. Biomater Sci,2016,4(9): 1314–1317. DOI: 10.1039/C6BM00296J
-
期刊类型引用(0)
其他类型引用(3)