欢迎来到《四川大学学报(医学版)》 2025年6月12日 星期四

不同分化程度的口腔鳞状细胞癌组织中蛋白激酶D的表达

陈红利, 崔博淼, 康颖竹, 王利伟, 王京楠, 冯云, 张平, 吕蝶, 陈娇

陈红利, 崔博淼, 康颖竹, 等. 不同分化程度的口腔鳞状细胞癌组织中蛋白激酶D的表达[J]. 四川大学学报(医学版), 2020, 51(6): 755-759. DOI: 10.12182/20201160505
引用本文: 陈红利, 崔博淼, 康颖竹, 等. 不同分化程度的口腔鳞状细胞癌组织中蛋白激酶D的表达[J]. 四川大学学报(医学版), 2020, 51(6): 755-759. DOI: 10.12182/20201160505
CHEN Hong-li, CUI Bo-miao, KANG Ying-zhu, et al. Expression Level of Protein Kinase D in Oral Squamous Cell Carcinoma with Diverse Differentiation[J]. Journal of Sichuan University (Medical Sciences), 2020, 51(6): 755-759. DOI: 10.12182/20201160505
Citation: CHEN Hong-li, CUI Bo-miao, KANG Ying-zhu, et al. Expression Level of Protein Kinase D in Oral Squamous Cell Carcinoma with Diverse Differentiation[J]. Journal of Sichuan University (Medical Sciences), 2020, 51(6): 755-759. DOI: 10.12182/20201160505

栏目: 口腔医学进展

不同分化程度的口腔鳞状细胞癌组织中蛋白激酶D的表达

基金项目: 国家自然科学基金(No.81802717)资助
详细信息
    通讯作者:

    陈娇: E-mail:cj123@163.com

Expression Level of Protein Kinase D in Oral Squamous Cell Carcinoma with Diverse Differentiation

More Information
  • 摘要:
      目的  探索口腔鳞状细胞癌(oral squamous cell carcinoma, OSCC)组织中蛋白激酶D(protein kinase D, PKD)1、2、3的表达情况及其与口腔鳞癌分化程度的关系。
      方法  收集10例正常口腔上皮组织、40例OSCC组织样本,采用免疫组化SP法检测PKD1、PKD2和PKD3的表达,评判阳性细胞比率及对染色强度进行评分,分析不同分化程度的OSCC组织中PKD1、PKD2和PKD3间的差异性,并分析PKD1、PKD2和PKD3免疫组化染色评分与OSCC分化程度的相关性。
      结果  PKD1和PKD3在OSCC组织中高表达;不同分化程度的OSCC组织中,PKD1、PKD2及PKD3免疫组化染色评分间差异均有统计学意义(P<0.001);PKD1和PKD2的免疫组化染色评分与OSCC分化程度呈负相关关系(r分别为−0.574和−0.341, P<0.001)。
      结论  不同分化程度的OSCC组织中,起主导作用的PKDs可能存在差异;PKD1和PKD2的表达水平与OSCC的分化程度存在相关性,OSCC分化程度越低,PKD1及PKD2的表达越高。

     

    Abstract:
      Objective  This study aimed to investigate the expression level of protein kinase D (PKD) in oral squamous cell carcinoma (OSCC) and its relationship with differentiation of OSCC.
      Methods  Sample was collected from 10 healthy control subjects and 40 OSCC confirmed by histopathological diagnosis, and the immunohistochemical staining was adopted to detect the expression of PKDs in OSCC tissues. The proportion of stained cell and staining intensity were evaluated to get a score, which used to analyze the difference among PKD1, PKD2 and PKD3 in various differentiation OSCC tissues. The correlations between the staining score of PKDs and differentiation of OSCC were further analyzed.
      Results  PKD1 and PKD3 were high expression in OSCC tissues. There were statistical significance among the staining score of PKD1, PKD2 and PKD3 in various differentiation OSCC tissues (P<0.001). In addition, there was a significantly negative correlation between the staining score of PKD1 and PKD2 with the differentiation of OSCC (r=−0.574, −0.341, P<0.001).
      Conclusion  In OSCC tissues with different degree of differentiation, there might be some differences among PKDs which play a major role. The expression of PKD1 and PKD2 was correlated with the differentiation of OSCC, the poor differentiation of OSCC, the higher expression of PKD1 and PKD2.

     

  • 口腔鳞状细胞癌(oral squamous cell carcinoma, OSCC)是最常见的头颈部恶性肿瘤,约占口腔恶性肿瘤的90%[1-2]。OSCC的常规治疗方法包括手术治疗、放疗和化疗等。随着人们对肿瘤发生机制的深入研究,基于致癌基因的分子靶向治疗已成为当前肿瘤治疗的新选择[3-4]

    蛋白激酶D(protein kinase D, PKDs)是一类钙离子/钙调蛋白依赖的丝氨酸/苏氨酸蛋白激酶,包括PKD1、PKD2及PKD3三个家族成员[5]。研究发现,PKDs在多种肿瘤细胞中异常表达,通过不同信号传导路径参与肿瘤的侵袭、转移、增殖、分化及蛋白运输等生物学过程[6-7],如PKDs可被G蛋白偶联受体(G protein-coupled receptor, GPCR)激动剂、生长因子、佛波酯等激活,参与细胞信号转导[8];甘油二酯(diacylglycerol, DAG)通过磷酸化作用调节细胞内PKDs的定位,并通过蛋白激酶C(protein kinase C, PKCs)激活PKDs[9]。PKDs的表达和功能具有组织特异性,如PKD1在正常乳腺导管上皮细胞中高表达,而在高侵袭乳腺癌细胞中表达下调[10-11],而PKD2和PKD3在高侵袭乳腺癌细胞中上调表达[12]。目前关于PKDs在OSCC中的表达及其与OSCC分化的关系的报道还较少,因此本研究对40例OSCC组织样本中PKD1、PKD2及PKD3的表达及其与OSCC分化程度的关系进行了探索,旨在分析PKDs在OSCC发生、发展中的作用,为靶向治疗OSCC提供新的参考。

    本研究经四川大学华西口腔医院医学伦理委员会严格审查并批准(批准号:WCHSIRB-D-2013-039),在患者知情同意的情况下开展本研究。收集2016年6月−2018年12月在四川大学华西口腔医院口腔颌面外科手术切除、并经病理检查确诊的40例OSCC患者的病理组织标本。其中男25例,女15例;平均年龄58岁,最高年龄74岁,最小年龄26岁;高分化OSCC患者15例,中分化OSCC患者15例,低分化OSCC患者10例。正常组为10例同期非OSCC手术切除的正常口腔上皮组织,其中男6例,女4例。

    兔多克隆抗PKD1一抗(CST公司,美国),兔多克隆抗PKD2一抗和兔多克隆抗PKD3一抗(SAB公司,美国),兔抗体免疫组化SP试剂盒(凯基生物公司,中国),柠檬酸钠抗原修复液(谷歌生物公司,中国),中性塑胶(索莱宝科技有限公司,中国),组织石蜡包埋机 Microm EC 350-2(Microm公司,德国),石蜡切片机LeicaRM2235和烤片机 Leica HI1220(Leica公司,德国),病理切片扫描机Aperio ScanScope GL(Aperio公司,美国)。

    将收集的组织标本在体积分数为4%的多聚甲醛中固定24 h后石蜡包埋,蜡块经石蜡切片机制备成5 μm厚的组织切片;将组织切片置于65 ℃恒温箱中烘烤3 h;经二甲苯(15 min)、二甲苯(15 min)、无水乙醇(5 min)、无水乙醇(5 min)、950 mL/L乙醇(5 min)、900 mL/L乙醇(5 min)、850 mL/L乙醇(5 min)、800 mL/L乙醇(5 min)、750 mL/L乙醇(5 min)的顺序脱蜡和水化后,用PBS洗3次,每次5 min;用现配的体积分数为3%的H2O2室温孵育切片15 min,PBS洗3次,每次5 min;用1×柠檬酸钠抗原修复液(pH6.0)微波修复15 min,自然冷却至室温,PBS洗3次,每次5 min;按照免疫组化SP试剂盒说明书,滴加山羊血清60 μL,37 ℃恒温箱中孵育30 min;分别滴加1∶50稀释的PKD1、1∶100稀释的PKD2、1∶200稀释的PKD3一抗,使之完全覆盖组织,4 ℃过夜;将组织从4 ℃冰箱中取出后37 ℃复温1 h,PBS洗3次,每次5 min,滴加二抗60 μL,37 ℃孵育1 h;PBS清洗玻片3次,每次5 min,滴加现配的DAB染色液,镜下控制染色时间;自来水终止染色,后用0.3%苏木素复染组织30 s,蒸馏水洗3次,每次2 min;再用盐酸酒精分化10 s,蒸馏水洗3次,每次2 min;按750 mL/L乙醇、800 mL/L乙醇、850 mL/L乙醇、900 mL/L乙醇、950 mL/L乙醇、无水乙醇、二甲苯的顺序对组织进行脱水和透明;滴加中性塑胶封片并镜检。

    免疫组化结果分析采用半定量计分法,由两位不知病理信息的研究人员独立观察每张切片,在100倍镜下随机选取5个视野,对细胞染色强度和阳性细胞比例分别计分,用细胞染色强度和阳性细胞比例的乘积代表PKDs表达强度。染色强度计分标准:无染色计0分,浅黄色计1分,中黄色计2分,深黄色计3分,深褐色计4分;阳性细胞比例计分标准:无阳性细胞或阳性细胞<5%计0分,阳性细胞占比5%~25%计1分,阳性细胞占比26%~50%计2分,阳性细胞占比51%~75%计3分,阳性细胞占比≥76%计4分。

    两组数据差异性分析采用单因素方差分析,采用Spearman分析进行PKDs与OSCC间的相关性分析,P<0.05为差异有统计学意义。

    图1。PKD1蛋白主要在细胞质中表达,少量在细胞核中表达。PKD1在OSCC组织中的表达高于正常口腔上皮组织,且在分化程度不同的OSCC组织中表达存在差异。统计结果(表1)显示,PKD1在高分化OSCC组织中的表达强度得分为5.67±1.76,在中分化OSCC组织中的表达强度得分为8.00±3.69,在低分化OSCC组织中的表达强度得分为11.30±3.64,表明PKD1在低分化OSCC组织中的表达高于高分化OSCC(P<0.001)。PKD2主要在细胞质中表达,在正常口腔上皮组织中不表达,在高分化OSCC组织中表达量极低,在中分化和高分化OSCC组织中有少量表达。PKD3在细胞质和细胞核中均有表达,在OSCC组织中的表达高于正常口腔上皮组织,且在中分化和低分化OSCC组织中的表达较高,均高于高分化OSCC(P<0.001)。

    图  1  PKD1、PKD2和PKD3在不同分化程度OSCC组织中的免疫组化染色结果(标尺=100 μm)
    Figure  1.  The immunohistochemical staining of PKD1, PKD2 and PKD3 in diverse differentiation OSCC tissues (scale bar=100 μm)
    表  1  PKD1、PKD2和PKD3在高分化、中分化及低分化OSCC组织中的免疫组化染色评分及其与OSCC分化程度的相关性
    Table  1.  The immumohistochemical (IHC) score of PKD1, PKD2 and PKD3 in well differentiated OSCC, moderately differentiated OSCC and poorly differentiated OSCC, and the correlation between the IHC score of PKDs with the differentiation of OSCC
    Differentiation degreenPKD1PKD2PKD3P
    IHC scorerPIHC scorerPIHC scorerP
    Well differentiated155.67±1.76−0.574<0.0011.11±1.17−0.341<0.0016.89±2.41−0.0730.389<0.001
    Moderately
     differentiated
    15
    8.00±3.69
    1.24±1.75
    7.11±3.55*
    <0.001
    Poorly differentiated1011.30±3.64*3.00±1.947.63±3.32*<0.001
     *P<0.001, vs. well differentiated.
    下载: 导出CSV 
    | 显示表格

    统计结果发现,在相同分化程度的OSCC组织中,PKD1、PKD2及PKD3的免疫组化染色评分差异均有统计学意义(P<0.001)(表1)。

    结果显示(表1),PKD1免疫组化染色评分与OSCC组织分化程度呈负相关(r=−0.574, P<0.001),表明OSCC组织分化程度越低,PKD1的表达越高;PKD2免疫组化染色评分与OSCC组织分化程度呈负相关(r=−0.341, P<0.001),即PKD2在分化程度越低的OSCC组织中表达越高;PKD3免疫组化染色评分与OSCC组织分化程度无相关关系(r=−0.073, P=0.389)。

    OSCC是口腔癌中最常见的类型,据研究报道,每年约有50万新增的OSCC病例[13],近年来其发病率有逐年增高的趋势[14]。OSCC易发生侵袭、转移,预后较差,晚期OSCC患者的5年生存率仅为40% ~50%[13],OSCC患者的生活质量和生命安全受到了极大的危害[2]。目前,OSCC的常规临床治疗方法主要包括手术治疗、放化疗等,但这些方法对晚期肿瘤患者的疗效并不理想。因此,OSCC的治疗重点已经转向靶向治疗,特别是针对基因水平上肿瘤细胞的增殖和凋亡。

    PKDs家族成员结构高度同源,均包含一个碳端结构域、一个PH结构域和一个富含半胱氨酸的DAG氮端结构域。PH结构域对PKDs的催化作用具有负调节作用,此结构域的缺失会导致PKDs的持续激活[15-17]。PKDs在细胞迁移[18],细胞增殖[19],蛋白质转运[20],上皮间充质转化(epithelial-mesenchymal transition, EMT)及细胞侵袭[21],血管生成[22]等多种生物学行为中发挥重要作用。PKDs的功能具有组织特异性,如PKD1在胰腺癌中上调表达[23],在胃癌中表达量降低[24-25];PKD2和PKD3在乳腺癌中和前列腺癌中均上调表达[26-30]

    本研究以40例分化程度不同的OSCC组织和10例正常口腔上皮组织为研究对象,利用免疫组化技术,分析了PKDs的表达。实验结果显示,PKDs在OSCC组织中表达的部位存在差异,PKD1和PKD2主要在细胞质中表达,PKD3在细胞质和细胞核中均有表达,且分化程度越低的OSCC组织中PKD3在细胞核的表达越高,提示在不同分化程度的OSCC中,PKD3可能通过调节其在核中的定位来发挥不同的生物学功能;其次,PKDs在分化程度不同的OSCC组织中,表达量存在差异,PKD1、PKD2和PKD3在中分化和低分化OSCC组织中的表达均高于其在高分化OSCC组织中表达;此外,研究还发现,同一分化程度下,PKD1、PKD2及PKD3仍存在明显差异。以上结果显示,PKDs的3个亚型PKD1、PKD2和PKD3存在功能上的差异,它们在不同细胞或者相同肿瘤细胞的不同分化程度中,发挥独特的功能;PKDs在细胞内定位的差异,可能是导致其功能差异的重要因素。已有研究显示,与正常前列腺组织相比,前列腺癌组织中PKD1和PKD3的表达量显著升高,并且随着肿瘤恶性程度的增加,PKD3在核中的定位显著增加[26-27]。也有研究表明,PKD1在正常乳腺导管上皮细胞中高表达,而在高侵袭乳腺癌细胞中表达下调[10-11],而PKD2和PKD3在高侵袭乳腺癌细胞中上调表达,表明三者在高侵袭乳腺癌中发挥不同作用,PKD1在乳腺癌的发生发展中起抑制作用,而PKD2和PKD3通过促进细胞迁移、增殖和多药耐药性等对乳腺癌的发生起促进作用[12, 28, 31-33]。另有研究表明,PKD2和PKD3在人角质细胞的生长和增殖中发挥相反作用[33]。此外,研究还发现PKDs的功能取决于其在细胞内的定位和胞内环境,定位在膜上的PKDs可以诱导转基因小鼠中CD4和CD8的表达,而细胞质中的PKDs会抑制T细胞中Vβ到DJβ的重组[34]

    此外,本研究还发现,PKD1和PKD2的表达与OSCC组织的分化程度呈负相关关系,OSCC分化程度越低,PKD1和PKD2的表达越高,表明PKDs在肿瘤细胞的分化过程中起重要的调节作用。

    综上所述,我们推测PKDs在OSCC的生长、分化等过程中发挥重要作用,但三者的功能也存在一定的差异,这为OSCC患者的治疗提供了新的靶点。同时也提示,治疗不同分化程度的OSCC,应选择不同的PKDs家族蛋白进行靶向治疗。

  • 图  1   PKD1、PKD2和PKD3在不同分化程度OSCC组织中的免疫组化染色结果(标尺=100 μm)

    Figure  1.   The immunohistochemical staining of PKD1, PKD2 and PKD3 in diverse differentiation OSCC tissues (scale bar=100 μm)

    表  1   PKD1、PKD2和PKD3在高分化、中分化及低分化OSCC组织中的免疫组化染色评分及其与OSCC分化程度的相关性

    Table  1   The immumohistochemical (IHC) score of PKD1, PKD2 and PKD3 in well differentiated OSCC, moderately differentiated OSCC and poorly differentiated OSCC, and the correlation between the IHC score of PKDs with the differentiation of OSCC

    Differentiation degreenPKD1PKD2PKD3P
    IHC scorerPIHC scorerPIHC scorerP
    Well differentiated155.67±1.76−0.574<0.0011.11±1.17−0.341<0.0016.89±2.41−0.0730.389<0.001
    Moderately
     differentiated
    15
    8.00±3.69
    1.24±1.75
    7.11±3.55*
    <0.001
    Poorly differentiated1011.30±3.64*3.00±1.947.63±3.32*<0.001
     *P<0.001, vs. well differentiated.
    下载: 导出CSV
  • [1] 桂心伟, 姚小武, 陈仕生, 等. NF-κB在口腔鳞状细胞癌及癌旁组织中的表达意义. 口腔疾病防治,2019,27(6): 360–363.
    [2]

    TANG D, TAO D, FANG Y, et al. TNF-alpha promotes invasion and metastasis via NF-Kappa B pathway in oral squamous cell carcinoma. Med Sci Monit Basic Res,2017,23: 141–149. DOI: 10.12659/MSMBR.903910

    [3]

    WANG P, LIU J, SONG Y, et al. Screening of immunosuppressive factors for biomarkers of breast cancer malignancy phenotypes and subtype-specific targeted therapy. Peer J,2019,7: e7197[2019-09-21]. https://doi.org/10.7717/peerj.7197.

    [4]

    WANG X, BAI Y, HAN Y, et al. Downregulation of GBAS regulates oral squamous cell carcinoma proliferation and apoptosis via the p53 signaling pathway. Onco Targets Ther,2019,12: 3729–3742. DOI: 10.2147/OTT.S207930

    [5]

    ASHE S, YADAV S. Maintenance of rhodopsin levels in drosophila photoreceptor and phototransduction requires protein kinase D. Fly(Austin),2018,12(3/4): 164–173.

    [6]

    BORGES S, PEREZ E A, THOMPSON E A, et al. Effective targeting of estrogen receptor-negative breast cancers with the protein kinase D inhibitor CRT006610111306. Mol Cancer Ther,2015,14(6): 1306–1316. DOI: 10.1158/1535-7163.MCT-14-0945

    [7] 余宇, 卢婉鹭, 陈娇, 等. 蛋白激酶D1沉默可降低人涎腺腺样囊性癌细胞ACC-2对紫杉醇的敏感度. 肿瘤防治研究,2016,43(6): 448–452. DOI: 10.3971/j.issn.1000-8578.2016.06.003
    [8]

    XU X H, JIN T. The novel functions of the PLC/PKC/PKD signaling axis in G protein-coupled receptor-mediated chemotaxis of neutrophils. J Immunol Res,2015,2015: 817604[2019-12-13]. https://doi.org/10.1155/2015/817604.

    [9]

    WANG Q J. PKD at the crossroads of DAG and PKC signaling. Trends Pharmacol Sci,2006,27(6): 317–323. DOI: 10.1016/j.tips.2006.04.003

    [10]

    BORGES S, DÖPPLER H, PEREZ E A, et al. Pharmacologic reversion of epigenetic silencing of the PRKD1 promoter blocks breast tumor cell invasion and metastasis. Breast Cancer Res,2013,15(2): R66[2019-12-13]. https://doi.org/10.1186/bcr3460.

    [11]

    EISELER T, DÖPPLER H, YAN I K, et al. Protein kinase D1 regulates matrix metalloproteinase expression and inhibits breast cancer cell invasion. Breast Cancer Res,2009,11(1): R13[2019-12-13]. https://doi.org/10.1186/bcr2232.

    [12]

    DURAND N, BORGES S, STORZ P. Functional and therapeutic significance of protein kinase D enzymes in invasive breast cancer. Cell Mol Life Sci,2015,72(22): 4369–4382. DOI: 10.1007/s00018-015-2011-2

    [13]

    SOLOMON B, YOUNG R J, RISCHIN D. Head and neck squamous cell carcinoma: genomics and emerging biomarkers for immunomodulatory cancer treatments. Semin Cancer Biol,2018,52: 228–240. DOI: 10.1016/j.semcancer.2018.01.008

    [14]

    CHI A C, DAY T A, NEVILLE B W. Oral cavity and oropharyngeal squamous cell carcinoma—an update. CA Cancer J Clin,2015,65(5): 401–421. DOI: 10.3322/caac.21293

    [15]

    RYKX A, DEKIMPE L, MIKHALAP S, et al. Protein kinase D: a family affair. FEBS Lett,2003,546(1): 81–86. DOI: 10.1016/S0014-5793(03)00487-3

    [16]

    ISHIKAWA E, KOSAKO H, YASUDA T, et al. Protein kinase D regulates positive selection of CD4+ thymocytes through phosphorylation of SHP-1. Nat Commun, 2016, 7: 12756[2019-12-13]. https://doi.org/10.1038/ncomms12756.

    [17]

    OLAYIOYE M A, BARISIC S, HAUSSER A. Multi-level control of actin dynamics by protein kinase D. Cell Signal,2013,25(9): 1739–1747. DOI: 10.1016/j.cellsig.2013.04.010

    [18]

    DöPPLER H, BASTEA L I, BORGES S, et al. Protein kinase D isoforms differentially modulate cofilin-driven directed cell migration. PLoS One, 2014, 9(5): e98090[2019-09-21]. https://doi.org/10.1371/journal.pone.0098090.

    [19]

    STARUSCHENKO A. To cleave or not to cleave: role of ADAM17 in cell proliferation in PKD. Am J Physiol Renal,2014,307(6): F658–F659. DOI: 10.1152/ajprenal.00341.2014

    [20]

    EISLER S A, CURADO F, LINK G, et al. A Rho signaling network links microtubules to PKD controlled carrier transport to focal adhesions. eLife, 2018, 7: e35907[2019-09-21]. https://doi.org/10.7554/eLife.35907.001.

    [21]

    DURAND N, BORGES S, STORZ P. Protein kinase D enzymes as regulators of EMT and cancer cell invasion. J Clin Med,2016,5(2): 20[2019-09-21]. https://doi.org/10.3390/jcm5020020.

    [22]

    XU W, QIAN J, ZENG F, et al. Protein kinase Ds promote tumor angiogenesis through mast cell recruitment and expression of angiogenic factors in prostate cancer microenvironment. J Exp Clin Canc Res,2019,38(1): 114[2019-09-21]. https://doi.org/10.1186/s13046-019-1118-y.

    [23]

    SUHA S, REY O, ROZENGURT E. Neurotensin induces protein kinase C-dependent protein kinase D activation and DNA synthesis in human pancreatic carcinoma cell line PANC-1. Cancer Res,2002,62(6): 1632–1640.

    [24]

    SHABELNIK M Y, KOVALEVSKA L M, YURCHENKO M Y, et al. Differential expression of PKD1 and PKD2 in gastric cancer and analysis of PKD1 and PKD2 function in the model system. Exp Oncol,2011,33(4): 206–211.

    [25]

    KIM M, JANG H R, KIM J H, et al. Epigenetic inactivation of protein kinase D1 in gastric cancer and its role in gastric cancer cell migration and invasion. Carcinogenesis,2007,29(3): 629–637. DOI: 10.1093/carcin/bgm291

    [26]

    CHEN J, DENG F, SINGH S V, et al. Protein kinase D3 (PKD3) contributes to prostate cancer cell growth and survival through a PKC/PKD3 pathway downstream of Akt and ERK 1/2. Cancer Res,2008,68(10): 3844–3853. DOI: 10.1158/0008-5472.CAN-07-5156

    [27]

    TANDON M, JOHNSON J, LI Z, et al. New pyrazolopyrimidine inhibitors of protein kinase D as potent anticancer agents for prostate cancer cells. PLoS One, 2013, 8(9): e75601[2019-09-21]. https://doi.org/10.1371/journal.pone.0075601.

    [28]

    LIU Y, WANG Y, YU S, et al. The role and mechanism of CRT0066101 as an effective drug for treatment of triple-negative breast cancer. Cell Physiol Biochem,2019,52(3): 382–396. DOI: 10.33594/000000027

    [29]

    LIU Y, LI J, MA Z, et al. Oncogenic functions of protein kinase D2 and D3 in regulating multiple cancer-related pathways in breast cancer. Cancer Med,2019,8(2): 729–741. DOI: 10.1002/cam4.1938

    [30]

    ZOU Z, ZENG F, XU W, et al. PKD2 and PKD3 promote prostate cancer cell invasion by modulating NF-kB- and HDAC1-mediated expression and activation of uPA. J Cell Sci,2012,125(20): 4800–4811. DOI: 10.1242/jcs.106542

    [31]

    HUCK B, DUSS S, HAUSSER A, et al. Elevated protein kinase D3(PKD3) expression supports proliferation of triple-negative breast cancer cells and contributes to mTORC1-S6K1 pathway activation. J Biol Chem,2014,289(6): 3138–3147. DOI: 10.1074/jbc.M113.502633

    [32]

    BASTEA L I, DÖPPLER H, BALOGUN B, et al. Protein kinase D1 maintains the epithelial phenotype by inducing a DNA-bound, inactive SNAI1 transcriptional repressor complex. PLoS One,2012,7(1): e30459[2019-09-21]. https://doi.org/10.1371/journal.pone.0030459.

    [33]

    RYVKIN V, RASHEL M, GADDAPARA T, et al. Opposing growth regulatory roles of protein kinase D isoforms in human keratinocytes. J Biol Chem,2015,290(17): 11199–11208. DOI: 10.1074/jbc.M115.643742

    [34]

    MARKLUND U, LIGHTFOOT K, CANTRELL D. Intracellular location and cell context-dependent function of protein kinase D. Immunity,2003,19(4): 491–501. DOI: 10.1016/S1074-7613(03)00260-7

  • 期刊类型引用(2)

    1. 齐曼,芦秋彤,刘少卿,张娟,崔艳萍,刘咏梅. RIG-Ⅰ、USP5在卵巢上皮性癌组织中的表达水平及预后意义. 中南医学科学杂志. 2023(02): 277-280 . 百度学术
    2. 林杰,王卫东,区活辉,何威,陈坚平,马靖,左海波,刘清波. CLEC5A抑制肝胆管细胞癌增殖和转移的作用研究. 天津医药. 2021(07): 678-682 . 百度学术

    其他类型引用(1)

图(1)  /  表(1)
计量
  • 文章访问数:  3082
  • HTML全文浏览量:  1433
  • PDF下载量:  50
  • 被引次数: 3
出版历程
  • 收稿日期:  2019-11-13
  • 修回日期:  2020-05-21
  • 网络出版日期:  2020-11-19
  • 发布日期:  2020-11-19

目录

/

返回文章
返回