6-Gingerol Pretreatment Alleviates Hypoxia/Reoxygenation-induced H9C2 Cardiomyocyte Injury by Inhibiting Oxidative Stress and Inflammation
-
摘要:目的 探讨6-姜酚(6-G)预处理是否能够减轻乏氧/复氧(H/R)诱导的H9C2细胞损伤及相关机制。方法 采用常规方法制备心肌细胞H/R体外模型〔H9C2细胞加入经氮气饱和后的乏氧液后放于培养箱,通入混合气体(体积分数1%O2,5%CO2,94%N2)作用15 min,培养3 h后取出细胞,置于常氧培养箱(37 ℃,体积分数5%CO2)进行复氧培养1 h〕。在建立心肌细胞H/R体外模型前给予6-G预处理,采用MTT法测定细胞活力,并筛选6-G干预下细胞活力最大的6-G质量浓度进行后续实验。采用DCFH-DA荧光探针检测6-G预处理对H9C2氧化应激水平的影响,荧光显微镜以及流式细胞仪观察细胞内氧化应激的作用。Western blot法检测H/R诱导细胞炎症反应因子中肿瘤坏死因子-α(TNF-α)、白介素-6(IL-6)、白介素-1β(IL-1β)表达的变化。结果 与H/R组相比,6-G+H/R组细胞活力从 50 μg/mL 6-G 组开始上升,200 μg/mL 6-G时细胞活力最大,后续实验选6-G干预质量浓度为200 μg/mL。与对照组相比,200 μg/mL 6-G组活性氧(ROS)含量无明显变化(P>0.05),ROS荧光波峰未见明显迁移,H/R组ROS的含量升高,差异有统计学意义(P<0.05),ROS荧光波峰向右侧迁移,与H/R组相比,6-G+H/R组ROS含量降低,差异有统计学意义(P<0.05),ROS荧光波峰向左侧回移。与对照组相比,6-G组TNF-α、IL-6、IL-1β的表达无明显变化(P>0.05);H/R组TNF-α、IL-6、IL-1β的表达升高,差异有统计学意义(P<0.05);与H/R组相比,6-G+H/R组TNF-α、IL-6、IL-1β的表达降低,差异有统计学意义(P<0.05)。结论 6-G预处理能够减轻H/R诱导的H9C2心肌细胞损伤,其机制可能与抑制氧化应激和炎症反应有关。Abstract:Objetive To observe the effect of 6-gingerol (6-G) pretreatment on hypoxia/reoxygenation (H/R) induced injury in H9C2 myocardial cell and investigate its related mechanism.Methods The H/R in vitro model of cardiomyocytes was prepared by conventional methods. In detail, H9C2 cells were added with the nitrogen-saturated hypoxic liquid, and placed in an incubator, mixed with gas (1% O2, 5% CO2, 94% N2) applying for 15 min. After culturing for 3 h, the cells were taken out and placed in an incubator (37℃, 5% CO2) for 1 h. Before establishing the cell model, the cells were pretreated with 6-G, and the cell viability was measured by MTT method to observe the protective effect of different concentrations of 6-G on H/R-induced cell damage. The 6-G mass concentration for pretreatment that led to the highest cell viability was used for follow-up experiments. DCFH-DA fluorescent probe was used to detect the effect of 6-G pretreatment on H9C2 oxidative stress level, and the intracellular oxidative stress was observed with fluorescence microscope and flow cytometry. Western blot method was used to detect the expression of tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6) and interleukin-1β (IL-1β) in H/R-induced cell inflammatory responses.Results Compared with the H/R group, the cell viability of the 6-G+H/R group began to increase when the concentration of 6-G promoted to50 μg/mL. The cell viability was the highest after pretreated with 200 μg/mL 6-G. Therefore, 200 μg/mL was considered as the best 6-G intervention concentration for subsequent experiment. The content of reactive oxygen species (ROS) in the 200 μg/mL 6-G group had no significant changes compared with the control group (P>0.05), and the ROS fluorescence peak did not migrate significantly. However the ROS content in the H/R group increased significantly compared with the control (P<0.05), and the ROS fluorescence peak shifted to the right. Compared with the H/R group, the ROS content of the 6-G+H/R group decreased (P<0.05), and the ROS fluorescence peak shifted to the left. Compared with the control group, the expressions of TNF-α, IL-6, IL-1β in the 6-G group had no significant changes (P>0.05); the expressions of TNF-α, IL-6, IL-1β in the H/R group increased (P<0.05). Compared with H/R group, the expressions of TNF-α, IL-6 and IL-1β in 6-G+H/R group decreased (P<0.05).Conclusion 6-G pretreatment can alleviate H/R-induced H9C2 myocardial injury, which may be related to the inhibition of oxidative stress and inflammatory responses.
-
Keywords:
- 6-Gingerol /
- Hypoxia/reperfusion /
- Oxidative stress /
- Inflammation /
- H9C2 myocardial cell
-
心肌梗死是目前世界上造成人类死亡的主要心脏疾病,及时重建闭塞冠状动脉血流通道是救治心肌梗死患者最重要的方式[1]。然而,组织器官再灌注本身可通过介导氧化应激、炎症反应等过程诱导细胞死亡,加重冠状动脉功能障碍和扩大心肌梗死面积,削弱再灌注治疗的益处,使患者预后恶化。这一现象也称为心肌缺血再灌注损伤(myocardial ischemia reperfusion injury, MIRI)[2]。避免缺血再灌注(ischemia/reperfusion, I/R)诱导损伤的发生对改善心肌梗死患者的预后具有重要意义,也是当前心血管领域的研究热点。
6姜酚(6-gingerol, 6-G)是一种提取于生姜中具有抗炎、抗氧化作用的天然化合物[3]。近年来关于6-G对心血管疾病保护作用的研究不断增多。研究表明,6-G在控制血压、抗动脉粥样硬化等方面有重要作用[4-5]。本课题组前期的动物实验发现,6-G预处理可以有效降低大鼠心肌MIRI[6-8]。但6-G是否能直接影响心肌细胞,抑制I/R造成的心肌损伤尚未明确。为此,本研究通过建立H9C2心肌细胞乏氧/复氧(hypoxia/reperfusion, H/R)模型,旨在观察6-G预处理在体外是否能减轻H/R造成的心肌细胞损伤,并深入探讨6-G预处理减轻H/R诱导的心肌细胞损伤的可能机制。
1. 材料与方法
1.1 材料
H9C2细胞购自中国科学院上海生命科学研究院细胞资源中心;6-G购自美国Sigma公司;肿瘤坏死因子-α(tumor necrosis factor, TNF-α)、白介素(interleukin, IL)-6、 IL-1β抗体购自英国Abcam公司;活性氧(ROS)试剂盒、DCFH-DA荧光探针购自长沙碧云天生物技术有限公司。
1.2 方法
1.2.1 细胞培养
于恒温培养箱(37 ℃,体积分数5%CO2)中,使用加入了10%胎牛血清(FBS)的DMEM培养基培养H9C2细胞,当细胞铺满瓶底约90%时用胰酶消化传代,取对数生长期细胞用于实验。
1.2.2 细胞H/R模型制作
本研究采用H/R体外模型。取对数生长期H9C2细胞接种96孔板后,培养箱孵育过夜(37 ℃,体积分数5%CO2)。实验开始前制作高浓度氮气饱和乏氧液(1 L/min×30 min)备用。为了模拟乏氧,取出接种了细胞的6孔板,吸弃旧培养液,按2 mL/孔加入经氮气饱和后的乏氧液并放入乏氧培养箱,通入混合气体(体积分数1%O2,5%CO2,94%N2)作用15 min,再将乏氧培养箱气口封闭,置于37 ℃培养3 h。为了模拟复氧,将细胞从乏氧培养箱拿出,置于新培养基(DMEM+10%FBS)后置于常氧培养箱(37 ℃,体积分数5%CO2)进行复氧培养1 h。
1.2.3 细胞活力测定
首先观察不同质量浓度6-G对H/R诱发的H9C2细胞损伤的影响。将H9C2细胞随机分为6组:对照组、H/R组、6-G(25、50、100、200 μg/mL)+H/R组。6-G(25、50、100、200 μg/mL)+H/R组于H/R处理前24 h根据分组加入相应质量浓度的6-G(25、50、100、200 μg/mL)进行预处理,对照组不加6-G干预,其余各组经1.2.2方法进行H/R处理,每组重复3孔。然后每个板孔内加入500 μg/mL的MTT于37 ℃、体积分数5%CO2 培养箱培育4 h,弃上清,加入150 μL DMSO溶液溶解细胞,并使用摇床振荡10 min溶解沉淀,微孔板检测器于490 nm处测定每孔吸光度值,常规计算细胞活力,并以对照组细胞活力为100%。根据检测结果,选择细胞活力最大的6-G质量浓度进行后续实验。
1.2.4 实验分组
将培养细胞随机分为4组:对照组、6-G组、H/R组、6-G+H/R组。对照组及6-G组不进行H/R处理,H/R组及6-G+H/R组按1.2.2方法进行H/R处理,6-G组及6-G+H/R于H/R处理前24 h加入6-G进行培养。
1.2.5 细胞内ROS水平测定
将接种于96板孔中细胞分组处理培养后,弃置板孔中培养液,每孔滴入10 μmol/L DCFH-DA探针1 mL,于37 ℃培养箱避光孵育20 min后洗涤3次,在倒置荧光显微镜下观察细胞荧光强度(并用直方图形式显示结果,其中横轴为DCF荧光强度,纵轴为细胞数量),并用流式细胞仪进行检测,以反映细胞内ROS水平。
1.2.6 Western blot检测细胞内炎症因子的表达水平
细胞分组处理培养后加入裂解液,4 ℃静置1 h,15 000 r/min离心15 min,取上清,Western blot法进行蛋白定量。使用SDS-PAGE电泳转至PVDF膜(依照分子量选择不同孔径PVDF膜),经封闭液封闭及TBST洗膜后,将PVDF膜分别加入TNF-α(1∶1 000)、IL-6(1∶1 000)、IL-β(1∶1 000)4 ℃孵育过夜。第二日TBST洗膜后加入与各自相对应的稀释二抗后,于室温下孵育1 h,使用化学发光系统(Amersham Pharmacia)显影印迹,通过Image-Pro Plus 6.0软件分析,以β-actin为内参标化蛋白表达。
1.2.7 统计学方法
计量资料用
$\overline x \pm s$ 表示。多组差异比较采用单因素方差分析,两两比较采用SNK-q检验,P<0.05为差异有统计学意义。 2. 结果
2.1 不同质量浓度6-G预处理对H/R诱导H9C2心肌细胞活力的影响
见图1。不同质量浓度(25、50、100、200 μg/mL)6-G 预处理H9C2心肌细胞24 h后,MTT法检测细胞活力结果显示,与H/R组细胞相比,6-G预处理组从 6-G质量浓度为50 μg/mL开始细胞活力升高(P<0.05),且活力升高具有与6-G质量浓度依赖性,6-G在质量浓度为200 μg/mL时对细胞的保护作用最强。因此,后续实验中6-G质量浓度选用200 μg/mL。
2.2 6-G预处理对H/R诱导的H9C2心肌细胞ROS水平的影响
见图2。DCFH-DA荧光探针检测结果显示,对照组与6-G组的ROS荧光信号强度差异无统计学意义(P>0.05),荧光波峰未见明显迁移。H/R组的ROS荧光信号强度较对照组与6-G组升高,差异有统计学意义(P<0.05),荧光波峰向右侧迁移。而6-G+H/R组的ROS荧光信号强度较H/R组减少,差异有统计学意义(P<0.05),荧光波峰向左侧回移。
2.3 6-G预处理对H/R诱导的H9C2心肌细胞TNF-α、IL-6、IL-1β水平的影响
见图3。Western blot检测结果显示,对照组与6-G组的TNF-α、IL-6、IL-1β水平差异无统计学意义(P>0.05),H/R组的TNF-α、IL-6、IL-1β水平高于对照组与6-G组(P<0.05),而6-G+H/R组的TNF-α、IL-6、IL-1β水平则较H/R组降低(P<0.05)。
图 3 Western blot测定6-G预处理对各组H9C2心肌细胞TNF-α、IL-6、IL-1β水平的影响(n=3)A: Control group; B: 6-G group; C: H/R group; D: 6-G+H/R group. * P<0.05, vs. A and B; # P<0.05, vs. C.Figure 3. Western blot showing the effects of 6-G pretreatment on TNF-α, IL-6 and IL-1β levels of H9C2 cardiomyocytes in different groups (n=3)3. 讨论
本课题组前期动物实验表明,6-G预处理可以通过增强大鼠机体抗氧化能力、激活PI3K/Akt通路以抑制炎症反应及细胞凋亡,减轻I/R诱导的大鼠心肌细胞损伤[6-8]。为了进一步阐明6-G预处理的作用机制,本次实验通过构建MIRI体外模型,并给予6-G预处理,观察6-G预处理在体外是否对H/R引发的H9C2心肌细胞损伤产生保护作用并探讨其相关机制。实验中观察发现,6-G的质量浓度在50~200 μg/mL范围内,6-G预处理可显著降低H/R诱导的细胞损伤,并呈现明显的浓度依赖性,这与既往关于6-G对细胞保护作用的实验结论相同[9-10]。
虽然关于MIRI的具体机制仍未研究透彻,但过度的氧化应激是目前公认的导致MIRI的核心环节[11]。氧化应激是由于体内氧化物质的增加和/或抗氧化防御的减弱所导致的一种负向反应,亦是I/R诱导心肌损伤的重要因素[12]。氧化应激的发生与ROS的爆发性增加有关,正常生理状态下的ROS,参与维持细胞稳态及多种信号通路的传导,而I/R及其他病理条件刺激下使细胞内线粒体大量的产生ROS,诱导氧化应激反应,并通过氧化应激介导炎症反应、脂质过氧化、钙离子转运失常、损伤线粒体DNA等,造成细胞凋亡[13]。已有多项研究证实,6-G具有抗氧化的作用,其被认为是天然的抗氧化剂。LI等[14]研究发现,6-G可以提高超氧化歧物酶、谷胱甘肽等抗氧化物的表达,加强其清除氧自由基的能力,进而改善年龄相关的肝脂肪变性。ZHANG等[15]的研究发现,经6-G处理可显著增强细胞的抗氧化能力,来降低H/R诱导的AC16心肌细胞损伤。本次实验结果同样表明,H/R后的H9C2细胞内的氧化应激反应显著激活,ROS的产生明显提高。而经6-G预处理则能显著降低H/R后的氧化应激反应的程度及ROS的产生。表明6-G减轻MIRI的作用与抑制氧化应激反应,减少ROS的产生有关。
炎症反应可以引起实质性细胞损伤和器官功能障碍,是造成I/R损伤的另一个重要原因[16]。炎症的发生被认为与转录因子NF-κB有关,NF-κB是调控炎症相关基因表达的关键细胞因子[17]。ROS的过量生成导致的氧化应激可使NF-κB得到激活,进而促进参与炎症和促纤维化反应的基因的转录,刺激炎症因子的表达。在I/R诱导的炎症中,TNF-α能够介导IL-6等其他炎症介质的释放产生炎症的级联反应,加重细胞损伤[18]。高浓度的IL-6可以激活中性粒细胞、淋巴细胞和巨噬细胞,然后诱导心肌的氧化损伤[19]。IL-1β作为心肌缺血再灌注早期阶段释放的炎症介质之一,可以诱导细胞凋亡、促进心肌细胞重塑[20]。LI等[21]研究发现,6-G可以下调p38 MAPK/NF-κB信号通路的表达,降低TNF-α、IL-6等炎性因子的表达以抑制大鼠肠缺血再灌注诱导的炎症反应。另有研究表明[22],6-G能够通过活化腺苷酸激活蛋白激酶,对葡聚糖钠硫酸诱导的大鼠结肠炎发挥抗炎作用。本次实验通过Western blot法测定显示,H/R后的H9C2心肌细胞内TNF-α、IL-1β、IL-6的表达明显升高。与LI等[21]的研究结论相似,本次实验发现6-G预处理同样可以有效减少I/R后H9C2心肌细胞的TNF-α、IL-1β、IL-6的产生,提示6-G可以通过减弱炎症反应来产生心肌保护作用。
综上所述,6-G预处理可以通过抑制氧化应激及炎症反应的产生,减轻H/R诱导的H9C2心肌细胞损伤,为进一步研究6-G对MIRI的保护作用及其机制提供了线索和理论依据。然而6-G预处理对H/R诱导的损伤所产生保护作用的最适剂量及具体机制,仍有待进一步研究。
-
图 3 Western blot测定6-G预处理对各组H9C2心肌细胞TNF-α、IL-6、IL-1β水平的影响(n=3)
A: Control group; B: 6-G group; C: H/R group; D: 6-G+H/R group. * P<0.05, vs. A and B; # P<0.05, vs. C.
Figure 3. Western blot showing the effects of 6-G pretreatment on TNF-α, IL-6 and IL-1β levels of H9C2 cardiomyocytes in different groups (n=3)
-
[1] LI J, XU X, ZHOU X, et al. Cardiovascular events associated with nicorandil administration prior to primary percutaneous coronary intervention in patients with acute ST-segment elevated myocardial infarction: a systematic review and meta-analysis. Expert Opin Drug Saf,2019,18(6): 537–547. DOI: 10.1080/14740338.2019.1617848
[2] FRANK A, BONNEY M, BONNEY S, et al. Myocardial ischemia reperfusion injury: from basic science to clinical bedside. Semin Cardiothorac Vasc Anesth,2012,16(3): 123–132. DOI: 10.1177/1089253211436350
[3] DE LIMA R M T, DOS REIS A C , DE MENEZES A P M, et al. Protective and therapeutic potential of ginger (Zingiber officinale) extract and [6]-gingerol in cancer: a comprehensive review. Phytothe Res,2018,32(10): 1885–1907. DOI: 10.1002/ptr.6134
[4] LEE Y J, JANG Y N, HAN Y M, et al. 6-Gingerol normalizes the expression of biomarkers related to hypertension via PPARδ in HUVECs, HEK293, and differentiated 3T3-L1 cells. PPAR Res, 2018, 2018: 6485064[2019-10-16]. https://doi.org/10.1155/2018/6485064.
[5] WANG S, TIAN M, YANG R, et al. 6-Gingerol ameliorates behavioral changes and atherosclerotic lesions in apoE-/-mice exposed to chronic mild stress. Cardiovasc Toxicol,2018,18(5): 420–430. DOI: 10.1007/s12012-018-9452-4
[6] LV X W, XU T T, WU Q, et al. 6-Gingerol activates PI3K/Akt and inhibits apoptosis to attenuate myocardial ischemia/reperfusion injury. Evid Based Complement Alternat Med, 2018, 2018: 9024034[2019-10-16]. https://doi.org/10.1155/2018/9024034.
[7] XU T T, QIN G, JIANG W, et al. 6-Gingerol protects heart by suppressing myocardial ischemia/reperfusion induced inflammation via the PI3K/Akt-dependent mechanism in rats. Evid Based Complement Alternat Med, 2018, 2018: 6209679[2019-10-16]. https://doi.org/10.1155/2018/6209679.
[8] 吕祥威, 徐彤彤. 6-姜酚抑制氧化应激减轻大鼠心肌缺血/再灌注损伤. 临床心血管病杂志,2017,33(6): 575–579. [9] 杨光. 6-姜酚生物学作用的细胞与分子机制研究. 大连: 大连医科大学, 2011: 1-77. [10] 王少鹏. 6-姜酚对过氧化氢致HUVEC损伤的保护作用及机制探讨. 大连: 大连医科大学, 2014: 1-76. [11] HALLADIN N L. Oxidative and inflammatory biomarkers of ischemia and reperfusion injuries. Dan Med J, 2015, 62(4): B5054[2019-10-16]. https://www.ncbi.nlm.nih.gov/pubmed/?term=Dan+Med+J%2C+2014%2C+62(4)%3AB5054.
[12] KURIAN G A, RASHMI R, SRINIVASAN V, et al. The role of oxidative stress in myocardial ischemia and reperfusion injury and remodeling: revisited. Oxid Med Cell Longev, 2016, 2016: 1656450[2019-10-16]. https://doi.org/10.1155/2016/1656450.
[13] CADENAS S. ROS and redox signaling in myocardial ischemia-reperfusion injury and cardioprotection. Free Radic Biol Med,2018,117: 76–89. DOI: 10.1016/j.freeradbiomed.2018.01.024
[14] LI J, WANG S, YAO L, et al. 6-gingerol ameliorates age-related hepatic steatosis: association with regulating lipogenesis, fatty acid oxidation, oxidative stress and mitochondrial dysfunction. Toxicol Appl Pharmacol,2019,362: 125–135. DOI: 10.1016/j.taap.2018.11.001
[15] ZHANG W, LIU X, JIANG Y, et al. 6-Gingerol attenuates ischemia-reperfusion-induced cell apoptosis in human AC16 cardiomyocytes through HMGB2-JNK1/2-NF-κB pathway. Evid Based Complement Alternat Med, 2019, 2019: 8798653[2019-10-16]. https://doi.org/10.1155/2019/8798653.
[16] HU X, MA R, LU J, et al. IL-23 promotes myocardial I/R injury by increasing the inflammatory responses and oxidative stress reactions. Cell Physiol Biochem,2016,38(6): 2163–2172. DOI: 10.1159/000445572
[17] YUAN L B, DAI X M, FU H Y, et al. Vaspin protects rats against myocardial ischemia/reperfusion injury (MIRI) through the TLR4/NF-κB signaling pathway. Eur J Pharmacol, 2018, 835:132-139.
[18] LIANG Y P, LIU Q, XU G H, et al. The lncRNA ROR/miR-124-3p/TRAF6 axis regulated the ischaemia reperfusion injury-induced inflammatory response in human cardiac myocytes. J Bioenerg Biomembr,2019,51(6): 381–392. DOI: 10.1007/s10863-019-09812-9
[19] JIAN J, XUAN F, QIN F, et al. The antioxidant, anti-inflammatory and anti-apoptotic activities of the bauhinia championii flavone are connected with protection against myocardial ischemia/reperfusion injury. Cell Physiol Biochem,2016,38(4): 1365–1375. DOI: 10.1159/000443080
[20] ZHU J, HUANG J, DAI D, et al. Recombinant human interleukin-1 receptor antagonist treatment protects rats from myocardial ischemia-reperfusion injury. Biomed Pharmacother,2019,111: 1–5. DOI: 10.1016/j.biopha.2018.12.031
[21] LI Y, XU B, XU M, et al. 6-Gingerol protects intestinal barrier from ischemia/reperfusion-induced damage via inhibition of p38 MAPK to NF-κB signalling. Pharmacol Res,2017,119: 137–148. DOI: 10.1016/j.phrs.2017.01.026
[22] CHANG K W, KUO C Y. 6-Gingerol modulates proinflammatory responses in dextran sodium sulfate (DSS)-treated Caco-2 cells and experimental colitis in mice through adenosine monophosphate-activated protein kinase (AMPK) activation. Food Funct,2015,6(10): 3334–3341. DOI: 10.1039/C5FO00513B
-
期刊类型引用(9)
1. 卢钰芬,郑孝明,韦少娟,陈礼琴,徐彤彤,吕祥威. miR-483-3p对乏氧/复氧诱导的心肌细胞凋亡和焦亡的作用研究. 实用医学杂志. 2025(03): 339-346 . 百度学术
2. 张曦宁,董振华,赵震宇,杜刘思,胡志希,李琳. 基于肠道菌群探讨四逆汤治疗慢性心力衰竭心阳虚证的作用机制. 中药药理与临床. 2024(01): 8-16 . 百度学术
3. 李交,肖友元,谢沁,马天蓉,李剑萍,段俊,苏懋. 6-姜酚通过调节Wnt/β-catenin信号通路对Aβ诱导的AD大鼠细胞凋亡、氧化应激和神经炎症的影响. 安徽医科大学学报. 2022(01): 95-100 . 百度学术
4. 徐桐,丛竹凤,贺梦媛,董萍,代龙,高鹏. 干姜的研究进展及质量标志物分析. 山东中医杂志. 2022(05): 569-575 . 百度学术
5. 许宗颖,车晓彦,包小红,刘兴兰,张冬梅,陈萌. 基于特征图谱和含量测定的乌梅丸质量标准研究. 中国药业. 2022(11): 73-78 . 百度学术
6. 熊霞霞,熊卫平,李林沅,杜娟,王道庄,王旭. 干扰miR-29a抑制氧糖剥夺/复氧诱导的大鼠H9c2心肌细胞线粒体融合与分裂. 细胞与分子免疫学杂志. 2022(11): 998-1004 . 百度学术
7. 谢燕飞,王冉,朱金华,周军. 6-姜酚对脂多糖致RAW264.7细胞炎症模型的作用及机制研究. 中药药理与临床. 2021(03): 72-75 . 百度学术
8. 张方圆,许伟明,王琛,胡镜清. 基于TLR4信号通路探讨中药防治心血管疾病的机制研究进展. 世界中医药. 2021(21): 3137-3142 . 百度学术
9. 良良,陈香梅,鲍布日额,张媛媛,王秀兰. HPLC法测定苏格木勒-10中5种成分. 中成药. 2021(12): 3298-3302 . 百度学术
其他类型引用(7)