Citation: | JING Xiao-lin, XING Ai-yun, BAI Huai, et al. miRNA-148b-3p Influences Glucose Metabolism of Offspring with Maternal Cholestasis by Regulating GLUT1 Expression in Placental Trophoblast Cells[J]. Journal of Sichuan University (Medical Sciences), 2019, 50(3): 328-333. |
[1] |
WILLIAMSON C, GEENES V. Intrahepatic cholestasis of pregnancy. Obstet Gynecol,2014,124(1): 120–133. DOI: 10.1097/AOG.0000000000000346
|
[2] |
WIKSTRÖM SHEMER E, MARSCHALL HU, LUDVIGSSON JF, et al. Intrahepatic cholestasis of pregnancy and associated adverse pregnancy and fetal outcomes: a 12-year population-based cohort study editorial comment. BJOG,2013,120(6): 717–723. DOI: 10.1111/1471-0528.12174
|
[3] |
KENYON AP, PIERCY CN, GIRLING J, et al. Obstetric cholestasis, outcome with active management: a series of 70 cases. BJOG,2002,109(3): 282–288. DOI: 10.1111/j.1471-0528.2002.01368.x
|
[4] |
REZAI S, LAM J, HENDERSON CE. Intrahepatic cholestasis of pregnancy: maternal and fetal outcomes associated with elevated bile acid levels. Am J Obstet Gynecol, 2015, 213(1): 114[2018-11-14]. https://doi.org/10.1016/j.ajog.2015.03.040.
|
[5] |
MARTINEAU MG, RAKER C, DIXON PH, et al. The metabolic profile of intrahepatic cholestasis of pregnancy is associated with impaired glucose tolerance, dyslipidemia, and increased fetal growth. Diabetes Care,2015,38(2): 243–248. DOI: 10.2337/dc14-2143
|
[6] |
MARTINEAU M, RAKER C, POWRIE R, et al. Intrahepatic cholestasis of pregnancy is associated with an increased risk of gestational diabetes. Eur J Obstet Gynecol Reprod Biol, 2014, 176: 80-85[2018-11-14]. https://doi.org/10.1016/j.ejogrb.2013.12.037.
|
[7] |
PAPACLEOVOULOU G, ABU-HAYYEH S, NIKOLOPOULOU E, et al. Maternal cholestasis during pregnancy programs metabolic disease in offspring. J Clin Invest,2013,123(7): 3172–3181. DOI: 10.1172/JCI68927
|
[8] |
BAUMANN MU, DEBORDE S, ILLSLEY NP. Placental glucose transfer and fetal growth. Endocrine,2002,19(1): 13–22. DOI: 10.1385/ENDO:19:1
|
[9] |
ACOSTA O, RAMIREZ VI, LAGER S, et al. Increased glucose and placental GLUT-1 in large infants of obese nondiabetic mothers. Am J Obstet Gynecol, 2015, 212(2): 227. e1-e7[2018-11-14]. https://doi.org/10.1016/j.ajog.2014.08.009.
|
[10] |
WEI W, HU YY. Expression of hypoxia-regulated genes and glycometabolic genes in placenta from patients with intrahepatic cholestasis of pregnancy. Placenta,2014,35(9): 732–736. DOI: 10.1016/j.placenta.2014.06.372
|
[11] |
ALVAREZ-GARCIA I, MISKA EA. MicroRNA functions in animal development and human disease. Development,2005,132(21): 4653–4662. DOI: 10.1242/dev.02073
|
[12] |
KROL J, LOEDIGE I, FILIPOWICZ W. The widespread regulation of microRNA biogenesis, function and decay. Nat Rev Genet,2010,11(9): 597–610. DOI: 10.1038/nrg2843
|
[13] |
贺 晶, 杨慧霞, 段 涛, 等. 妊娠期肝内胆汁淤积症诊疗指南(2015). 临床肝胆病杂志,2015,31(10): 1575–1578. DOI: 10.3969/j.issn.1001-5256.2015.10.003
|
[14] |
ILLSLEY NP. Glucose transporters in the human placenta. Placenta,2000,21(1): 14–22. DOI: 10.1053/plac.1999.0448
|
[15] |
BARTA E, DRUGAN A. A clinical study which relates to a theoretical simulation of the glucose transport in the human placenta under various diabetic conditions. J Perinat Med,2016,44(4): 405–410.
|
[16] |
BAUMANN MU, ZAMUDIO S, ILLSLEY NP. Hypoxic upregulation of glucose transporters in BeWo choriocarcinoma cells is mediated by hypoxia-inducible factor-1. Am J Physiol Cell Physiol,2007,293(1): C477–C485. DOI: 10.1152/ajpcell.00075.2007
|
[17] |
JANSSON T, EKSTRAND Y, WENNERGREN M, et al. Placental glucose transport in gestational diabetes mellitus. Am J Obstet Gynecol,2001,184(2): 111–116. DOI: 10.1067/mob.2001.108075
|
[18] |
SHI Z, ZHAO C, GUO X, et al. Differential expression of microRNAs in omental adipose tissue from gestational diabetes mellitus subjects reveals miR-222 as a regulator of ERalpha expression in estrogen-induced insulin resistance. Endocrinology,2014,155(5): 1982–1990. DOI: 10.1210/en.2013-2046
|
[19] |
RAO ZZ, ZHANG XW, DING YL, et al. miR-148a-mediated estrogen-induced cholestasis in intrahepatic cholestasis of pregnancy: role of PXR/MRP3. PLoS One, 2017, 12(6): e0178702[2018-11-20]. https://doi.org/10.1371/journal.pone.0178702.
|
[20] |
MOUILLET JF, OUYANG Y, COYNE CB, et al. MicroRNAs in placental health and disease. Am J Obstet Gynecol,2015,213(4 Suppl): S163–S172.
|
[21] |
POIRIER C, DESGAGNE V, GUERIN R, et al. MicroRNAs in pregnancy and gestational diabetes mellitus: emerging role in maternal metabolic regulation. Curr Diab Rep,2017,17(5): 35. DOI: 10.1007/s11892-017-0856-5
|
[22] |
MAVRELI D, PAPANTONIOU N, KOLIALEXI A. miRNAs in pregnancy-related complications: an update. Expert Rev Mol Diagns,2018,18(7): 587–589. DOI: 10.1080/14737159.2018.1480939
|
[23] |
CHEN Y, SONG YX, WANG ZN. The microRNA-148/152 family: multi-faceted players. Mol Cancer,2013,12: 43. DOI: 10.1186/1476-4598-12-43
|
[24] |
MIAO C, ZHANG J, ZHAO K, et al. The significance of microRNA-148/152 family as a prognostic factor in multiple human malignancies: a meta-analysis. Oncotarget,2017,8(26): 43344–43355.
|
[25] |
ZHANG H, YE Q, DU Z, et al. MiR-148b-3p inhibits renal carcinoma cell growth and pro-angiogenic phenotype of endothelial cell potentially by modulating FGF2. Biomed Pharmacother, 2018, 107: 359-367[2018-11-20]. https://doi.org/10.1016/j.biopha.2018.07.054.
|
[26] |
WANG Y, LI J, KUANG D, et al. miR-148b-3p functions as a tumor suppressor in GISTs by directly targeting KIT. Cell Commun Signal,2018,16(1): 16. DOI: 10.1186/s12964-018-0228-z
|
[27] |
LI X, JIANG M, CHEN D, et al. miR-148b-3p inhibits gastric cancer metastasis by inhibiting the Dock6/Rac1/Cdc42 axis. J Exp Clin Cancer Res,2018,37(1): 71. DOI: 10.1186/s13046-018-0729-z
|
[28] |
DING X, LIU J, LIU T, et al. miR-148b inhibits glycolysis in gastric cancer through targeting SLC2A1. Cancer Med,2017,6(6): 1301–1310. DOI: 10.1002/cam4.2017.6.issue-6
|
[29] |
AGARWAL V, BELL GW, NAM JW, et al. Predicting effective microRNA target sites in mammalian mRNAs. Elife, 2015, 4: e05005[2018-11-20]. https://doi.org/10.7554/eLife.05005.001.
|
[30] |
BARKER DJ. The origins of the developmental origins theory. J Intern Med,2007,261(5): 412–417. DOI: 10.1111/jim.2007.261.issue-5
|
[31] |
SILVEIRA PP, PORTELLA AK, GOLDANI MZ, et al. Developmental origins of health and disease (DOHaD). J Pediatr (Rio J),2007,83(6): 494–504. DOI: 10.2223/JPED.1728
|
[32] |
MEAS T. Fetal origins of insulin resistance and the metabolic syndrome: a key role for adipose tissue?. Diabetes Metab,2010,36(1): 11–20. DOI: 10.1016/j.diabet.2009.09.001
|
[33] |
KANAKA-GANTENBEIN C. Fetal origins of adult diabetes. Ann N Y Acad Sci,2010,1205: 99–105. DOI: 10.1111/j.1749-6632.2010.05683.x
|
[34] |
HANSON MA, GLUCKMAN PD. Developmental origins of health and disease: new insights. Basic Clin Pharmacol Toxicol,2008,102(2): 90–93. DOI: 10.1111/j.1742-7843.2007.00186.x
|