Objective Methoxy poly (ethylene glycol)-poly (lactic acid) (mPEG-PDLLA) was used to increase water solubility of netupitant, thus to provide the experimental basis for development of the injection of netupitant.
Methods Film hydration method was ultilized to prepare the netupitant-loaded mPEG-PDLLA nanoparticles (NT/mPEG-PDLLA-NPs). The preparation formulation and technology were optimized based on the single factor tests by investigating the effect of netupitant/mPEG-PDLLA mass ratio (m/m), filming temperature and time on the mean particle diameters and loading capacities. The size distributions and Zeta potentials of NT/mPEG-PDLLA-NPs were investigated using dynamic light scattering analysis, and the morphology was observed under the transmission electron microscope (TEM). The cytotoxicity of NT/mPEG-PDLLA-NPs evaluated by MTT method.
Results The optimal NT/mPEG-PDLLA-NPs were achieved at the netupitant/mPEG-PDLLA mass ratio of 1/6 with filming temperature at 55 ℃ and filming time for 30 min. The resulting NT/mPEG-PDLLA-NPs displayed an opalescent and translucent appearance, with a high loading capacity of 14% and netupitant concentration of 10 mg/mL. NT/mPEG-PDLLA-NPs showed a spherical morphology, with a mean diameter of 58 nm and a nearly neutral Zeta potential of -0.29 mV. The NT/mPEG-PDLLA-NPs showed a cytotoxicity similar to free NT.
Conclusion Netupitant was successfully loaded into mPEG-PDLLA-NPs to significantly increased the water solubility, thus providing the experimental foundation for the further development of injection of netupitant.