Citation: | BAI Yaning, SUN Xiaoru, WEN Qiao, et al. Effects of Extreme Environments on Human Sleep[J]. Journal of Sichuan University (Medical Sciences), 2024, 55(4): 1034-1043. DOI: 10.12182/20240760402 |
Recently, with the rapid growth of the global population and the exhaustion of resources, exploration activities in extreme environments such as the polar regions, the outer space, the deep sea, the deep underground and highlands are becoming increasingly more frequent. This in-depth exploration of the external environment and the consequent dramatic changes in lifestyles impact on sleep, a basic life activity of humans, in ways that cannot be overlooked. the basic life activity of human beings. Sleep, a basic life activity and the result of the evolution of organisms to adapt to their environment, is closely associated with sleep homeostasis and endogenous rhythms. However, external environmental changes and lifestyle shifts in extreme environments have had a significant impact on the patterns and the quality of sleep in humans. Furthermore, this impact can lead to many physiological and psychological problems, posing a great threat to human health. In this review, we delved into the specific effects of different extreme natural environments and enclosed environments on sleep, elaborating on how these environments alter the patterns and the quality of sleep in humans. In addition, we summarized the changes in human sleep under extreme environments to help gain a better understanding of the mechanisms by which these specific environments impact human sleep. It is expected that this review will provide a solid theoretical foundation for optimizing long-term survival strategies in extreme environments and help humans adapt to and overcome the challenges posed by extreme environments more effectively.
[1] |
Van Den BERG N H, MICHAUD X, PATTYN N, et al. How sleep research in extreme environments can inform the military: advocating for a transactional model of sleep adaptation. Curr Psychiatry Rep, 2023, 25(2): 73–91. doi: 10.1007/s11920-022-01407-3.
|
[2] |
DUFFY J F, ABBOTT S M, BURGESS H J, et al. Workshop report. Circadian rhythm sleep-wake disorders: gaps and opportunities. Sleep, 2021, 44(5): zsaa281. doi: 10.1093/sleep/zsaa281.
|
[3] |
ANDRILLON T, OUDIETTE D. What is sleep exactly? Global and local modulations of sleep oscillations all around the clock. Neurosci Biobehav Rev, 2023, 155: 105465. doi: 10.1016/j.neubiorev.2023.105465.
|
[4] |
LIU D, DAN Y. A motor theory of sleep-wake control: arousal-action circuit. Annu Rev Neurosci, 2019, 42: 27–46. doi: 10.1146/annurev-neuro-080317-0618131.
|
[5] |
LANE J M, QIAN J, MIGNOT E, et al. Genetics of circadian rhythms and sleep in human health and disease. Nat Rev Genet, 2023, 24(1): 4–20. doi: 10.1038/s41576-022-00519-z.
|
[6] |
DEANTONI M, REYT M, BERTHOMIER C, et al. Association between circadian sleep regulation and cortical gyrification in young and older adults. Sleep, 2023, 46(9): zsad094. doi: 10.1093/sleep/zsad094.
|
[7] |
ZIVI P, De GENNARO L, FERLAZZO F. Sleep in Isolated, Confined, and Extreme (ICE): a review on the different factors affecting human sleep in ICE. Front Neurosci, 2020, 14: 851. doi: 10.3389/fnins.2020.00851.
|
[8] |
BURKE T M, MARKWALD R R, CHINOY E D, et al. Combination of light and melatonin time cues for phase advancing the human circadian clock. Sleep, 2013, 36(11): 1617–1624. doi: 10.5665/sleep.3110.
|
[9] |
COLWELL C S. Linking neural activity and molecular oscillations in the SCN. Nat Rev Neurosci, 2011, 12(10): 553–569. doi: 10.1038/nrn3086.
|
[10] |
KAWASAKI A, WISNIEWSKI S, HEALEY B, et al. Impact of long-term daylight deprivation on retinal light sensitivity, circadian rhythms and sleep during the Antarctic winter. Sci Rep, 2018, 8(1): 16185. doi: 10.1038/s41598-018-33450-7.
|
[11] |
OHTA H, YAMAZAKI S, MCMAHON D G. Constant light desynchronizes mammalian clock neurons. Nat Neurosci, 2005, 8(3): 267–269. doi: 10.1038/nn1395.
|
[12] |
LUBAS M M, MADURO R S, SZKLO-COXE M. An exploratory study examining the associations between sunlight exposure, sleep behaviours and sleep outcomes during an Arctic summer. Int J Circumpolar Health, 2019, 78(1): 1574698. doi: 10.1080/22423982.2019.1574698.
|
[13] |
PATTYN N, MAIRESSE O, CORTOOS A, et al. Sleep during an Antarctic summer expedition: new light on "polar insomnia". J Appl Physiol (1985), 2017, 122(4): 788–794. doi: 10.1152/japplphysiol.00606.2016.
|
[14] |
WALKER W H, WALTON J C, DEVRIES A C, et al. Circadian rhythm disruption and mental health. Transl Psychiatry, 2020, 10(1): 28. doi: 10.1038/s41398-020-0694-0.
|
[15] |
TUBBS A S, FERNANDEZ F X, GRANDNER M A, et al. The mind after midnight: nocturnal wakefulness, behavioral dysregulation, and psychopathology. Front Netw Physiol, 2022, 1: 830338. doi: 10.3389/fnetp.2021.830338.
|
[16] |
SPINELLI E, WERNER JUNIOR J. Human adaptative behavior to Antarctic conditions: a review of physiological aspects. WIREs Mech Dis, 2022, 14(5): e1556. doi: 10.1002/wsbm.1556.
|
[17] |
TROYNIKOV O, WATSON C G, NAWAZ N. Sleep environments and sleep physiology: A review. J Therm Biol, 2018, 78: 192–203. doi: 10.1016/j.jtherbio.2018.09.012.
|
[18] |
Le BON O. Relationships between REM and NREM in the NREM-REM sleep cycle: a review on competing concepts. Sleep Med, 2020, 70: 6–16. doi: 10.1016/j.sleep.2020.02.004.
|
[19] |
BUGUET A, REIS J, RADOMSKI M W. Sleep and global warming: How will we sleep when the Earth is hotter? J Neurol Sci, 2023, 454: 120859. doi: 10.1016/j.jns.2023.120859.
|
[20] |
BACH V, TELLIEZ F, LIBERT J P. The interaction between sleep and thermoregulation in adults and neonates. Sleep Med Rev, 2002, 6(6): 481–492. doi: 10.1053/smrv.2001.0177.
|
[21] |
EGG M, KÖBLITZ L, HIRAYAMA J, et al. Linking oxygen to time: the bidirectional interaction between the hypoxic signaling pathway and the circadian clock. Chronobiol Int, 2013, 30(4): 510–529. doi: 10.3109/07420528.2012.754447.
|
[22] |
WEIL J V. Sleep at high altitude. High Alt Med Biol, 2004, 5(2): 180–189. doi: 10.1089/1527029041352162.
|
[23] |
SAN T, POLAT S, CINGI C, et al. Effects of high altitude on sleep and respiratory system and theirs adaptations. Sci World J, 2013, 2013: 241569. doi: 10.1155/2013/241569.
|
[24] |
HEINZER R, SAUGY J J, RUPP T, et al. Comparison of sleep disorders between real and simulated 3450-m altitude. Sleep, 2016, 39(8): 1517–1523. doi: 10.5665/sleep.6010.
|
[25] |
FRANTZIDIS C A, DIMITRIADOU C K, CHRISKOS P, et al. Cortical connectivity analysis for assessing the impact of microgravity and the efficacy of reactive sledge jumps countermeasure to NREM 2 sleep. Acta Astronaut, 2020, 166: 579–589. doi: 10.1016/j.actaastro.2018.11.043.
|
[26] |
FUJITA S I, RUTTER L, ONG Q, et al. Integrated RNA-seq analysis indicates asynchrony in clock genes between tissues under spaceflight. Life (Basel, Switzerland), 2020, 10(9): 196. doi: 10.3390/life10090196.
|
[27] |
李华玉, 时萧寒, 张新蕊, 等. 203例胶质瘤患者睡眠障碍与炎症细胞因子的关联分析. 山东大学学报(医学版), 2022, 60(12): 26–30. doi: 10.6040/j.issn.1671-7554.0.2022.0567. doi: 10.6040/j.issn.1671-7554.0.2022.0567.
LI H Y, SHI X H, ZHANG X R, ey al. Association between sleep disturbance and inflammatory cytokines in 203 patients with glioma. J Sichuan Univ (Med Sci), 2022, 60(12): 26–30. doi: 10.6040/j.issn.1671-7554.0.2022.0567.
|
[28] |
ZHANG H, WANG Y, ZHANG Z, et al. Alterations in the activity and sleep of Drosophila melanogaster under simulated microgravity. NPJ Microgravity, 2021, 7(1): 27. doi: 10.1038/s41526-021-00157-5.
|
[29] |
GARRETT-BAKELMAN F E, DARSHI M, GREEN S J, et al. The NASA Twins Study: a multidimensional analysis of a year-long human spaceflight. Science, 2019, 364(6436): eaau8650. doi: 10.1126/science.aau8650.
|
[30] |
JONES C W, BASNER M, MOLLICONE D J, et al. Sleep deficiency in spaceflight is associated with degraded neurobehavioral functions and elevated stress in astronauts on six-month missions aboard the International Space Station. Sleep, 2022, 45(3): zsac006. doi: 10.1093/sleep/zsac006.
|
[31] |
CACIOPPO J T, CACIOPPO S, CAPITANIO J P, et al. The neuroendocrinology of social isolation. Annu Rev Psychol, 2015, 66: 733–767. doi: 10.1146/annurev-psych-010814-015240.
|
[32] |
SPERA V, MAIELLO M, PALLUCCHINI A, et al. Adult attention-deficit hyperactivity disorder and clinical correlates of delayed sleep phase disorder. Psychiatry Res, 2020, 291: 113162. doi: 10.1016/j.psychres.2020.113162.
|
[33] |
CHELLAPPA S L, AESCHBACH D. Sleep and anxiety: from mechanisms to interventions. Sleep Med Rev, 2022, 61: 101583. doi: 10.1016/j.smrv.2021.101583.
|
[34] |
EMENS J S, BERMAN A M, THOSAR S S, et al. Circadian rhythm in negative affect: implications for mood disorders. Psychiatry Res, 2020, 293: 113337. doi: 10.1016/j.psychres.2020.113337.
|
[35] |
ZHANG D, LIN Z, CHEN F, et al. What could interfere with a good night's sleep? The risks of social isolation, poor physical and psychological health among older adults in China. Res Aging, 2022, 44(7/8): 519–530. doi: 10.1177/01640275211065103.
|
[36] |
ARENDT J. Biological rhythms during residence in polar regions. Chronobiol Int, 2012, 29(4): 379–394. doi: 10.3109/07420528.2012.668997.
|
[37] |
BHATTACHARYYA M, PAL M S, SHARMA Y K, et al. Changes in sleep patterns during prolonged stays in Antarctica. Int J Biometeorol, 2008, 52(8): 869–879. doi: 10.1007/s00484-008-0183-2.
|
[38] |
SLETTEN T L, SULLIVAN J P, ARENDT J, et al. The role of circadian phase in sleep and performance during Antarctic winter expeditions. J Pineal Res, 2022, 73(2): e12817. doi: 10.1111/jpi.12817.
|
[39] |
PATTYN N, Van PUYVELDE M, FERNANDEZ-TELLEZ H, et al. From the midnight sun to the longest night: Sleep in Antarctica. Sleep Med Rev, 2018, 37: 159–172. doi: 10.1016/j.smrv.2017.03.001.
|
[40] |
CHEN N, WU Q, XIONG Y, et al. Circadian rhythm and sleep during prolonged antarctic residence at Chinese Zhongshan Station. Wilderness Environ Med, 2016, 27(4): 458–467. doi: 10.1016/j.wem.2016.07.004.
|
[41] |
MORAES M M, MARQUES A L, BORGES L, et al. Sleep impairment and altered pattern of circadian biomarkers during a long-term Antarctic summer camp. Sci Rep, 2023, 13(1): 15959. doi: 10.1038/s41598-023-42910-8.
|
[42] |
SIVERTSEN B, FRIBORG O, PALLESEN S, et al. Sleep in the land of the midnight sun and polar night: the Tromso study. Chronobiol Int, 2021, 38(3): 334–342. doi: 10.1080/07420528.2020.1845191.
|
[43] |
CORBETT R W, MIDDLETON B, ARENDT J. An hour of bright white light in the early morning improves performance and advances sleep and circadian phase during the Antarctic winter. Neurosci Lett, 2012, 525(2): 146–151. doi: 10.1016/j.neulet.2012.06.046.
|
[44] |
MOTTRAM V, MIDDLETON B, WILLIAMS P, et al. The impact of bright artificial white and 'blue-enriched' light on sleep and circadian phase during the polar winter. J Sleep Res, 2011, 20(1 Pt 2): 154-161. doi: 10.1111/j.1365-2869.2010.00875.x.
|
[45] |
TAN L, LI T, LUO L, et al. Clinical, polysomnographic, and heart rate variability in highland obstructive sleep apnea patients responding to one-night nocturnal oxygen supplementation: a post-hoc analysis from a randomized, crossover trial. Sleep Med, 2023, 110: 146–153. doi: 10.1016/j.sleep.2023.08.003.
|
[46] |
KOLLER D P, KASANIN V, FLYNN-EVANS E E, et al. Altered sleep spindles and slow waves during space shuttle missions. NPJ Microgravity, 2021, 7(1): 48. doi: 10.1038/s41526-021-00177-1.
|
[47] |
BUGUET A. Sleep under extreme environments: effects of heat and cold exposure, altitude, hyperbaric pressure and microgravity in space. J Neurol Sci, 2007, 262(1/2): 145–152. doi: 10.1016/j.jns.2007.06.040.
|
[48] |
BOSCHERT A L, ELMENHORST D, GAUGER P, et al. Sleep is compromised in -12° head down tilt position. Front Physiol, 2019, 10: 397. doi: 10.3389/fphys.2019.00397.
|
[49] |
PETIT G, CEBOLLA A M, FATTINGER S, et al. Local sleep-like events during wakefulness and their relationship to decreased alertness in astronauts on ISS. NPJ Microgravity, 2019, 5: 10. doi: 10.1038/s41526-019-0069-0.
|
[50] |
RAHMAN S A, KENT B A, GRANT L K, et al. Effects of dynamic lighting on circadian phase, self-reported sleep and performance during a 45-day space analog mission with chronic variable sleep deficiency. J Pineal Res, 2022, 73(4): e12826. doi: 10.1111/jpi.12826.
|
[51] |
BARGER L K, FLYNN-EVANS E E, KUBEY A, et al. Prevalence of sleep deficiency and use of hypnotic drugs in astronauts before, during, and after spaceflight: an observational study. Lancet Neurol, 2014, 13(9): 904–912. doi: 10.1016/S1474-4422(14)70122-X.
|
[52] |
BASNER M, DINGES D F. Lost in space: sleep. Lancet Neurol, 2014, 13(9): 860–862. doi: 10.1016/S1474-4422(14)70176-0.
|
[53] |
GIRARD F, LITVIN S Y, SHERMAN A, et al. Phenology in the deep sea: seasonal and tidal feeding rhythms in a keystone octocoral. Proc Biol Sci, 2022, 289(1985): 20221033. doi: 10.1098/rspb.2022.1033.
|
[54] |
MAT A M, SARRAZIN J, MARKOV G V, et al. Biological rhythms in the deep-sea hydrothermal mussel Bathymodiolus azoricus. Nat Commun, 2020, 11(1): 3454. doi: 10.1038/s41467-020-17284-4.
|
[55] |
BERENJI ARDESTANI S, BALESTRA C, BOUZINOVA E V, et al. Evaluation of divers' neuropsychometric effectiveness and high-pressure neurological syndrome via computerized test battery package and questionnaires in operational setting. Front Physiol, 2019, 10: 1386. doi: 10.3389/fphys.2019.01386.
|
[56] |
NIEUWENHUYS A, DORA J, KNUFINKE-MEYFROYT M, et al. "20, 000 leagues under the sea": Sleep, cognitive performance, and self-reported recovery status during a 67-day military submarine mission. Appl Ergon, 2021, 91: 103295. doi: 10.1016/j.apergo.2020.103295.
|
[57] |
Van PUYVELDE M, RIETJENS G, HELMHOUT P, et al. The submariners' sleep study: a field investigation of sleep and circadian hormones during a 67-day submarine mission with a strict 6-h-on/6-h-off watch routine. J Appl Physiol (1985), 2022, 132(4): 1069–1079. doi: 10.1152/japplphysiol.00130.2021.
|
[58] |
BEALE A D, WHITMORE D, MORAN D. Life in a dark biosphere: a review of circadian physiology in "arrhythmic" environments. J Comp Physiol B, 2016, 186(8): 947–968. doi: 10.1007/s00360-016-1000-6.
|
[59] |
BLIZNYUK A, GROSSMAN Y, MOSKOVITZ Y. The effect of high pressure on the NMDA receptor: molecular dynamics simulations. Sci Rep, 2019, 9(1): 10814. doi: 10.1038/s41598-019-47102-x.
|
[60] |
KENDALL-BAR J M, WILLIAMS T M, MUKHERJI R, et al. Brain activity of diving seals reveals short sleep cycles at depth. Science, 2023, 380(6642): 260–265. doi: 10.1126/science.adf0566.
|
[61] |
PONGANIS P J. State of the art review: from the seaside to the bedside: insights from comparative diving physiology into respiratory, sleep and critical care. Thorax, 2019, 74(5): 512–518. doi: 10.1136/thoraxjnl-2018-212136.
|
[62] |
LIU J, MA T, LIU Y, et al. History, advancements, and perspective of biological research in deep-underground laboratories: a brief review. Environ Int, 2018, 120: 207–214. doi: 10.1016/j.envint.2018.07.031.
|
[63] |
谢和平, 刘吉峰, 高明忠, 等. 深地医学研究进展及构想. 四川大学学报(医学版), 2018, 49(2): 163–168. doi: 10.13464/j.scuxbyxb.2018.02.001.
XIE H P, LIU J F, GAO M Z, et al. The resrarch advancement and conceotion of the deep-underground medicine. J Sichuan Univ (Med Sci), 2018, 49(2): 163–168. doi: 10.13464/j.scuxbyxb.2018.02.001.
|
[64] |
WEN Q, ZHOU J, SUN X, et al. Urine metabolomics analysis of sleep quality in deep-underground miners: a pilot study. Front Public Health, 2022, 10: 969113. doi: 10.3389/fpubh.2022.969113.
|
[65] |
ZHAO X, HAN K, GAO Y, et al. Effects of shift work on sleep and cognitive function among male miners. Psychiatry Res, 2021, 297: 113716. doi: 10.1016/j.psychres.2021.113716.
|
[66] |
STRAPAZZON G, PILO L, BESSONE L, et al. CAVES as an environment for astronaut training. Wilderness Environ Med, 2014, 25(2): 244–245. doi: 10.1016/j.wem.2013.12.003.
|
[67] |
LI L, WANG S, HUANG L, et al. The impacts of workplace environment on coal miners' emotion and cognition depicted in a mouse model. Front Behav Neurosci, 2022, 16: 896545. doi: 10.3389/fnbeh.2022.896545.
|
[68] |
LI X, YANG X, SUN X, et al. Associations of musculoskeletal disorders with occupational stress and mental health among coal miners in Xinjiang, China: a cross-sectional study. BMC Public Health, 2021, 21(1): 1327. doi: 10.1186/s12889-021-11379-3.
|
[69] |
FINNBERG N, WAMBI C, KENNEDY A R, et al. The effects of antioxidants on gene expression following gamma-radiation (GR) and proton radiation (PR) in mice in vivo. Cell Cycle, 2013, 12(14): 2241–2247. doi: 10.4161/cc.25324.
|
[70] |
LIU J, LIU Y, MA T, et al. Subjective perceptions and psychological distress associated with the deep underground: a cross-sectional study in a deep gold mine in China. Medicine (Baltimore), 2019, 98(22): e15571. doi: 10.1097/MD.0000000000015571.
|
[71] |
WOOLCOTT O O, ADER M, BERGMAN R N. Glucose homeostasis during short-term and prolonged exposure to high altitudes. Endocr Rev, 2015, 36(2): 149–173. doi: 10.1210/er.2014-1063.
|
[72] |
TAYLOR A T. High-altitude illnesses: physiology, risk factors, prevention, and treatment. Rambam Maimonides Med J, 2011, 2(1): e0022. doi: 10.5041/RMMJ.10022.
|
[73] |
LU H, ZHANG H, JIANG Y. Methazolamide in high-altitude illnesses. Eur J Pharm Sci, 2020, 148: 105326. doi: 10.1016/j.ejps.2020.105326.
|
[74] |
TSENG C, LIN F, CHAO H, et al. Impact of rapid ascent to high altitude on sleep. Sleep Breath, 2015, 19(3): 819–826. doi: 10.1007/s11325-014-1093-7.
|
[75] |
ANDERSON P J, WOOD-WENTZ C M, BAILEY K R, et al. Objective versus self-reported sleep quality at high altitude. High Alt Med Biol, 2023, 24(2): 144–148. doi: 10.1089/ham.2017.0078.
|
[76] |
GRIMM M, SEGLIAS A, ZIEGLER L, et al. Sleep apnea in school-age children living at high altitude. Pulmonology, 2023, 29(5): 385–391. doi: 10.1016/j.pulmoe.2023.02.008.
|
[77] |
TAN L, LI Y, CHEN H, et al. Sleep at high altitude: a bibliometric study and visualization analysis from 1992 to 2022. Heliyon, 2024, 10(1): e23041. doi: 10.1016/j.heliyon.2023.e23041.
|
[78] |
KONG F, LIU G, XU J. Pharmacological agents for improving sleep quality at high altitude: a systematic review and meta-analysis of randomized controlled trials. Sleep Med, 2018, 51: 105–114. doi: 10.1016/j.sleep.2018.06.017.
|
OPEN ACCESS This article is licensed under a Creative Commons Attribution-NonCommercial 4.0 International license (CC BY-NC 4.0). In other words, the full-text content of the journal is made freely available for third-party users to copy and redistribute in any medium or format, and to remix, transform, and build upon the content of the journal. You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may not use the content of the journal for commercial purposes. For more information about the license, visit https://creativecommons.org/licenses/by-nc/4.0
[1] | SONG Ting, XU Huan, TANG Xuewei, ZHANG Xueli, HUANG Linya, GUO Bing, ZHANG Juying. Urban-Rural Disparities in Activities of Daily Living Among Older Adults in Sichuan Province and the Influencing Factors[J]. JOURNAL OF SICHUAN UNIVERSITY (MEDICAL SCIENCES), 2025, 56(2): 478-483. DOI: 10.12182/20250360502 |
[2] | WEI Jingyi, ZHAO Qiuyan, HUANG Wei, LIU Xing, ZHANG Xuemei. Analysis of the Occurrence and Influencing Factors of Oral Frailty in Elderly Residents of Elderly Care Facilities[J]. JOURNAL OF SICHUAN UNIVERSITY (MEDICAL SCIENCES), 2024, 55(4): 947-957. DOI: 10.12182/20240760602 |
[3] | ZHOU Yaxi, XIONG Hai, ZHONG Huaichang, WAN Yang, ZHANG Yufei. Prevalence and Influencing Factors of Isolated Diastolic Hypertension in Tibetan Population in Tibet[J]. JOURNAL OF SICHUAN UNIVERSITY (MEDICAL SCIENCES), 2024, 55(2): 360-366. DOI: 10.12182/20240360501 |
[4] | RENQINGLAMU, XIONG Hai, ZHANG Yufei, LIU Biao, DING Kangzhi, WAN Yang. Analysis of Influencing Factors of Hyperuricemia in Tibetan Population in Nagqu City, Tibet[J]. JOURNAL OF SICHUAN UNIVERSITY (MEDICAL SCIENCES), 2024, 55(1): 176-182. DOI: 10.12182/20231160101 |
[5] | ZHANG Di, ZHANG Liyan. Disaster Literacy Status and the Influencing Factors: A National Survey of 107997 Chinese Nurses[J]. JOURNAL OF SICHUAN UNIVERSITY (MEDICAL SCIENCES), 2023, 54(4): 824-830. DOI: 10.12182/20230760101 |
[6] | ZHANG Chun-xi, REN Xiao-hui, YANG Xian-mei, FAN Ruo-xin, WANG Yan, Li Yi-ling, JIANG Hong-jun, LIU Yuan-yuan, LIU Xiang. Quality of Life and Its Influencing Factors Among Schizophrenia Patients Living in Urban and Rural Areas[J]. JOURNAL OF SICHUAN UNIVERSITY (MEDICAL SCIENCES), 2023, 54(3): 608-613. DOI: 10.12182/20230560202 |
[7] | MA Li-ying, XU Xiao-ting, DOU Qian, ZHAO Dong-mei, XIANG Yun-gai, LI Peng-fen, TAN Li. Influencing Factors of Pregnancy Outcome of in vitro Fertilization-Embryo Transfer[J]. JOURNAL OF SICHUAN UNIVERSITY (MEDICAL SCIENCES), 2022, 53(1): 133-136. DOI: 10.12182/20220160205 |
[8] | WU Nian-wei, YANG Fan, XIA Jing, MA Tian-pei, YU Chun, LI Ning-xiu. Analysis of the Status of Depression and the Influencing Factors in Middle-Aged and Older Adults in China[J]. JOURNAL OF SICHUAN UNIVERSITY (MEDICAL SCIENCES), 2021, 52(5): 767-771. DOI: 10.12182/20210960507 |
[9] | YANG Yu-jia, ZHANG Ding-yue, RUAN Xiao-miao, QIU Li. Thickness of A1 Pulley Measured by High-frequency Ultrasound and Its Influence Factors in Healthy Volunteers[J]. JOURNAL OF SICHUAN UNIVERSITY (MEDICAL SCIENCES), 2021, 52(1): 104-110. DOI: 10.12182/20201160206 |
[10] | HOU Fu-rang, YANG Yang, YAN Liu-qing, GAO Yu-yang, ZHANG Xi, DAI Xue-mei, YUAN Ping. Analysis on the Health-related Quality of Life and Influencing Factors among the Older Generation of Migrant Workers in Chengdu City[J]. JOURNAL OF SICHUAN UNIVERSITY (MEDICAL SCIENCES), 2020, 51(3): 383-387. DOI: 10.12182/20200560105 |