Citation: | AN Ke, ZHOU Xuedong. Latest Findings on Ferroptosis and Osteoarthropathy[J]. Journal of Sichuan University (Medical Sciences), 2023, 54(6): 1294-1299. DOI: 10.12182/20231160209 |
[1] |
HELMAN S L, ZHOU J, FUQUA B K, et al. The biology of mammalian multi-copper ferroxidases. Biometals,2023,36(2): 263–281. DOI: 10.1007/s10534-022-00370-z
|
[2] |
ANDERSON G J, FRAZER D M. Current understanding of iron homeostasis. Am J Clin Nutr,2017,106(Suppl 6): 1559s–1566s. DOI: 10.3945/ajcn.117.155804
|
[3] |
ASCHEMEYER S, QIAO B, STEFANOVA D, et al. Structure-function analysis of ferroportin defines the binding site and an alternative mechanism of action of hepcidin. Blood,2018,131(8): 899–910. DOI: 10.1182/blood-2017-05-786590
|
[4] |
WANG C Y, BABITT J L. Liver iron sensing and body iron homeostasis. Blood,2019,133(1): 18–29. DOI: 10.1182/blood-2018-06-815894
|
[5] |
SU L J, ZHANG J H, GOMEZ H, et al. Reactive oxygen species-induced lipid peroxidation in apoptosis, autophagy, and ferroptosis. Oxid Med Cell Longev,2019,2019: 5080843. DOI: 10.1155/2019/5080843
|
[6] |
YANG W S, SRIRAMARATNAM R, WELSCH M E, et al. Regulation of ferroptotic cancer cell death by GPX4. Cell,2014,156(1/2): 317–331. DOI: 10.1016/j.cell.2013.12.010
|
[7] |
GAO G, LI J, ZHANG Y, et al. Cellular iron metabolism and regulation. Adv Exp Med Biol,2019,1173: 21–32. DOI: 10.1007/978-981-13-9589-5_2
|
[8] |
HOU W, XIE Y, SONG X, et al. Autophagy promotes ferroptosis by degradation of ferritin. Autophagy,2016,12(8): 1425–1428. DOI: 10.1080/15548627.2016.1187366
|
[9] |
KAGAN V E, MAO G, QU F, et al. Oxidized arachidonic and adrenic PEs navigate cells to ferroptosis. Nat Chem Biol,2017,13(1): 81–90. DOI: 10.1038/nchembio.2238
|
[10] |
CHEN X, LI J, KANG R, et al. Ferroptosis: machinery and regulation. Autophagy,2021,17(9): 2054–2081. DOI: 10.1080/15548627.2020.1810918
|
[11] |
CHU B, KON N, CHEN D, et al. ALOX12 is required for p53-mediated tumour suppression through a distinct ferroptosis pathway. Nat Cell Biol,2019,21(5): 579–591. DOI: 10.1038/s41556-019-0305-6
|
[12] |
HUNTER D J, BIERMA-ZEINSTRA S. Osteoarthritis. Lancet,2019,393(10182): 1745–1759. DOI: 10.1016/s0140-6736(19)30417-9
|
[13] |
SINGH P, MARCU K B, GOLDRING M B, et al. Phenotypic instability of chondrocytes in osteoarthritis: on a path to hypertrophy. Ann N Y Acad Sci,2019,1442(1): 17–34. DOI: 10.1111/nyas.13930
|
[14] |
HSIA A W, EMAMI A J, TARKE F D, et al. Osteophytes and fracture calluses share developmental milestones and are diminished by unloading. J Orthop Res,2018,36(2): 699–710. DOI: 10.1002/jor.23779
|
[15] |
HU Y, CHEN X, WANG S, et al. Subchondral bone microenvironment in osteoarthritis and pain. Bone Res,2021,9(1): 20. DOI: 10.1038/s41413-021-00147-z
|
[16] |
YAO X, SUN K, YU S, et al. Chondrocyte ferroptosis contribute to the progression of osteoarthritis. J Orthop Translat,2021,27: 33–43. DOI: 10.1016/j.jot.2020.09.006
|
[17] |
SIMÃO M, CANCELA M L. Musculoskeletal complications associated with pathological iron toxicity and its molecular mechanisms. Biochem Soc Trans,2021,49(2): 747–759. DOI: 10.1042/bst20200672
|
[18] |
ZHENG L, ZHANG Z, SHENG P, et al. The role of metabolism in chondrocyte dysfunction and the progression of osteoarthritis. Ageing Res Rev,2021,66: 101249. DOI: 10.1016/j.arr.2020.101249
|
[19] |
SUN K, GUO Z, HOU L C, et al. Iron homeostasis in arthropathies: From pathogenesis to therapeutic potential. Ageing Res Rev,2021,72: 101481. DOI: 10.1016/j.arr.2021.101481
|
[20] |
PAN Z, HE Q, ZENG J, et al. Naringenin protects against iron overload-induced osteoarthritis by suppressing oxidative stress. Phytomedicine,2022,105: 154330. DOI: 10.1016/j.phymed.2022.154330
|
[21] |
LIU F, ZHANG W L, MENG H Z, et al. Regulation of DMT1 on autophagy and apoptosis in osteoblast. Int J Med Sci,2017,14(3): 275–283. DOI: 10.7150/ijms.17860
|
[22] |
ISHII K A, FUMOTO T, IWAI K, et al. Coordination of PGC-1beta and iron uptake in mitochondrial biogenesis and osteoclast activation. Nat Med,2009,15(3): 259–266. DOI: 10.1038/nm.1910
|
[23] |
YANG J, DONG D, LUO X, et al. Iron overload-induced osteocyte apoptosis stimulates osteoclast differentiation through increasing osteocytic rankl productionin vitro. Calcif Tissue Int,2020,107(5): 499–509. DOI: 10.1007/s00223-020-00735-x
|
[24] |
SELLAM J, BERENBAUM F. The role of synovitis in pathophysiology and clinical symptoms of osteoarthritis. Nat Rev Rheumatol,2010,6(11): 625–635. DOI: 10.1038/nrrheum.2010.159
|
[25] |
YAZAR M, SARBAN S, KOCYIGIT A, et al. Synovial fluid and plasma selenium, copper, zinc, and iron concentrations in patients with rheumatoid arthritis and osteoarthritis. Biol Trace Elem Res,2005,106(2): 123–132. DOI: 10.1385/bter:106:2:123
|
[26] |
NIEUWENHUIZEN L, SCHUTGENS R E, Van ASBECK B S, et al. Identification and expression of iron regulators in human synovium: evidence for upregulation in haemophilic arthropathy compared to rheumatoid arthritis, osteoarthritis, and healthy controls. Haemophilia,2013,19(4): e218–227. DOI: 10.1111/hae.12208
|
[27] |
HAKOBYAN N, KAZARIAN T, JABBAR A A, et al. Pathobiology of hemophilic synovitis I: overexpression of mdm2 oncogene. Blood,2004,104(7): 2060–2064. DOI: 10.1182/blood-2003-12-4231
|
[28] |
WU C L, HARASYMOWICZ N S, KLIMAK M A, et al. The role of macrophages in osteoarthritis and cartilage repair. Osteoarthritis Cartilage,2020,28(5): 544–554. DOI: 10.1016/j.joca.2019.12.007
|
[29] |
ZHOU Y, QUE K T, ZHANG Z, et al. Iron overloaded polarizes macrophage to proinflammation phenotype through ROS/acetyl-p53 pathway. Cancer Med,2018,7(8): 4012–4022. DOI: 10.1002/cam4.1670
|
[30] |
Di MAGGIO R, MAGGIO A. The new era of chelation treatments: effectiveness and safety of 10 different regimens for controlling iron overloading in thalassaemia major. Br J Haematol,2017,178(5): 676–688. DOI: 10.1111/bjh.14712
|
[31] |
RODRIGUES DEMORAIS T, GAMBERO A. Iron chelators in obesity therapy--old drugs from a new perspective? Eur J Pharmacol,2019,861: 172614. DOI: 10.1016/j.ejphar.2019.172614
|
[32] |
TCHETINA E V, MARKOVA G A, POOLE A R, et al. Deferoxamine suppresses collagen cleavage and protease, cytokine, and COL10A1 expression and upregulates AMPK and Krebs cycle genes in human osteoarthritic cartilage. Eur J Pharmacol,2016,2016: 6432867. DOI: 10.1155/2016/6432867
|
[33] |
KALANAKY S, HAFIZI M, SAFARI S, et al. TLc-A, the leading nanochelating-based nanochelator, reduces iron overloadin vitro and in vivo. Int J Hematol,2016,103(3): 274–282. DOI: 10.1007/s12185-015-1932-8
|
[34] |
YU L, HE M, LIU S, et al. Fluorescent egg white-based carbon dots as a high-sensitivity iron chelator for the therapy of nonalcoholic fatty liver disease by iron overload in zebrafish. ACS Appl Mater Interfaces,2021,13(46): 54677–54689. DOI: 10.1021/acsami.1c14674
|
[35] |
ZUO S, ZOU W, WU R M, et al. Icariin alleviates IL-1β-induced matrix degradation by activating the NRF2/ARE pathway in human chondrocytes. Drug Des Devel Ther,2019,13: 3949–3961. DOI: 10.2147/dddt.S203094
|
[36] |
ZHAO L, WANG Y, WANG Z, et al. Effects of dietary resveratrol on excess-iron-induced bone loss via antioxidative character. J Nutr Biochem,2015,26(11): 1174–1182. DOI: 10.1016/j.jnutbio.2015.05.009
|
[37] |
TIAN Q, WU S, DAI Z, et al. Iron overload induced death of osteoblasts in vitro: involvement of the mitochondrial apoptotic pathway. Peer J,2016,4: e2611. DOI: 10.7717/peerj.2611
|
[38] |
SHEN C L, CHYU M C, WANG J S. Tea and bone health: steps forward in translational nutrition. Am J Clin Nutr,2013,98(6 Suppl): 1694s–1699s. DOI: 10.3945/ajcn.113.058255
|
[39] |
WU D Q, ZHONG H M, DING Q H, et al. Protective effects of biochanin A on articular cartilage: in vitro and in vivo studies. BMC Complement Altern Med,2014,14: 444. DOI: 10.1186/1472-6882-14-444
|
[40] |
XU Z, SUN W, LI Y, et al. The regulation of iron metabolism by hepcidin contributes to unloading-induced bone loss. Bone,2017,94: 152–161. DOI: 10.1016/j.bone.2016.09.023
|
[41] |
O'NEILL T, FELSON D. Mechanisms of osteoarthritis (OA) pain. Curr Osteoporos Rep,2018,16(5): 611–616. DOI: 10.1007/s11914-018-0477-1
|
OPEN ACCESS This article is licensed under a Creative Commons Attribution-NonCommercial 4.0 International license (CC BY-NC 4.0). In other words, the full-text content of the journal is made freely available for third-party users to copy and redistribute in any medium or format, and to remix, transform, and build upon the content of the journal. You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may not use the content of the journal for commercial purposes. For more information about the license, visit https://creativecommons.org/licenses/by-nc/4.0
[1] | CHEN Xiunan, WANG Ruiqi, SHAN Hongying, ZHOU Ping, LI Rong. Quercetin Alleviates H2O2-Induced Oxidative Stress Damage to Human Endometrial Stromal Cells by Inhibiting the p38 MAPK/NOX4 Signaling Pathway[J]. JOURNAL OF SICHUAN UNIVERSITY (MEDICAL SCIENCES), 2024, 55(3): 552-558. DOI: 10.12182/20240560107 |
[2] | GONG Xue, HUANG Jin, WANG Chichiu. Research Progress in the Role of Mitochondrial Dysfunction in Endometriosis-Associated Infertility[J]. JOURNAL OF SICHUAN UNIVERSITY (MEDICAL SCIENCES), 2024, 55(3): 521-526. DOI: 10.12182/20240560404 |
[3] | ZHOU Hao, CHEN Tao, WU Aimin. Effects of Oxidative Stress on Mitochondrial Functions and Intervertebral Disc Cells[J]. JOURNAL OF SICHUAN UNIVERSITY (MEDICAL SCIENCES), 2024, 55(2): 249-255. DOI: 10.12182/20240360201 |
[4] | YI Xiangling, HE Yani, CHEN Kehong. Research Progress in Stress-Induced Senescence of Renal Tubular Cells in Diabetic Nephropathy[J]. JOURNAL OF SICHUAN UNIVERSITY (MEDICAL SCIENCES), 2023, 54(6): 1085-1090. DOI: 10.12182/20231160107 |
[5] | FANG Chenxi, SUN Liya, LIU Yan, XIAO Li, SUN Lin. Non-Classical Clinical Types and Pathological Changes of Diabetic Kidney Disease: A Review[J]. JOURNAL OF SICHUAN UNIVERSITY (MEDICAL SCIENCES), 2023, 54(6): 1074-1079. DOI: 10.12182/20231160102 |
[6] | LIU Ying, PENG Wei, QI Hong-bo. Glucose Metabolism-Derived Nicotinamide Adenine Dinucleotide Phosphate in Late-Onset Preeclampsia Placenta Tissue and Its Correlation with Oxidative Stress[J]. JOURNAL OF SICHUAN UNIVERSITY (MEDICAL SCIENCES), 2022, 53(6): 1028-1032. DOI: 10.12182/20221160212 |
[7] | OU Wei, LIANG Yu, QING Yu, DENG Yan, WU Wei, LI Tao. The Effect of Short-Term Intermittent Hypoxia Exposure on Mouse Myocardial Oxidative Stress and Cardiac Function[J]. JOURNAL OF SICHUAN UNIVERSITY (MEDICAL SCIENCES), 2022, 53(1): 98-104. DOI: 10.12182/20220160103 |
[8] | JI Li-wei, DENG Yan, LI Tao. Effect of Ketone Body β-Hydroxybutyrate to Attenuate Inflammation-Induced Mitochondrial Oxidative Stress in Vascular Endothelial Cells[J]. JOURNAL OF SICHUAN UNIVERSITY (MEDICAL SCIENCES), 2021, 52(6): 954-959. DOI: 10.12182/20211160202 |
[9] | FENG Xiao-rong, YAO Jie, WU Ya, CHENG Xia, ZOU Ping-jin, WANG Hua, YANG Mu. Research and Application of Stem Cell-Based Therapy in Idiopathic Pulmonary Fibrosis: A Review[J]. JOURNAL OF SICHUAN UNIVERSITY (MEDICAL SCIENCES), 2021, 52(3): 373-379. DOI: 10.12182/20210560304 |
[10] | WANG Kui, MING Hui, ZUO Jing, TIAN Hai-long, HUANG Can-hua. A Review of the Redox Regulation of Tumor Metabolism[J]. JOURNAL OF SICHUAN UNIVERSITY (MEDICAL SCIENCES), 2021, 52(1): 57-63. DOI: 10.12182/20210160204 |