Citation: | CHEN Jing, HUANG Yinghui, ZHAO Jinghong. Trimethylamine N-Oxide Induces Renal Fibrosis Through the PI3K/AKT/SREBP1 Pathway[J]. Journal of Sichuan University (Medical Sciences), 2023, 54(6): 1105-1111. DOI: 10.12182/20231160106 |
[1] |
HUMPHREYS B D. Mechanisms of renal fibrosis. Annu Rev Physiol,2018,80(1): 309–326. DOI: 10.1146/annurev-physiol-022516-034227
|
[2] |
RUIZ-ORTEGA M, LAMAS S, ORTIZ A. Antifibrotic agents for the management of CKD: a review. Am J Kidney Dis,2022,80(2): 251–263. DOI: 10.1053/j.ajkd.2021.11.010
|
[3] |
ZHOU W, WU W H, SI Z L, et al. The gut microbe Bacteroides fragilis ameliorates renal fibrosis in mice. Nat Commun,2022,13(1): 6081. DOI: 10.1038/s41467-022-33824-6
|
[4] |
CHEN J, TANG Y, ZHONG Y, et al. P2Y12 inhibitor clopidogrel inhibits renal fibrosis by blocking macrophage-to-myofibroblast transition. Mol Ther ISSN,2022,30(9): 3017–3033. DOI: 10.1016/j.ymthe.2022.06.019
|
[5] |
GENG X Q, MA A, HE J Z, et al. Ganoderic acid hinders renal fibrosis via suppressing the TGF-β/Smad and MAPK signaling pathways. Acta Pharmacol Sin,2020,41(5): 670–677. DOI: 10.1038/s41401-019-0324-7
|
[6] |
LI S, QIU B, LU H, et al. Hyperhomocysteinemia accelerates acute kidney injury to chronic kidney disease progression by downregulating heme oxygenase-1 expression. Antioxid Redox Signal,2019,30(13): 1635–1650. DOI: 10.1089/ars.2017.7397
|
[7] |
NAKANO T, WATANABE H, IMAFUKU T, et al. Indoxyl sulfate contributes to mTORC1-induced renal fibrosis via the OAT/NADPH oxidase/ROS pathway. Toxins,2021,13(12): 909. DOI: 10.3390/toxins13120909
|
[8] |
SUN B, WANG X, LIU X, et al. Hippuric acid promotes renal fibrosis by disrupting redox homeostasis via facilitation of NRF2-KEAP1-CUL3 interactions in chronic kidney disease. Antioxidants,2020,9(9): 783. DOI: 10.3390/antiox9090783
|
[9] |
WANG S, ZUO A, JIANG W, et al. JMJD1A/NR4A1 signaling regulates the procession of renal tubular epithelial interstitial fibrosis induced by AGEs in HK-2. Front Med,2021,8: 807694. DOI: 10.3389/fmed.2021.807694
|
[10] |
RAYEGO-MATEOS S, VALDIVIELSO J M. New therapeutic targets in chronic kidney disease progression and renal fibrosis. Expert Opin Ther Targets,2020,24(7): 655–670. DOI: 10.1080/14728222.2020.1762173
|
[11] |
WU K, YUAN Y, YU H, et al. The gut microbial metabolite trimethylamine N-oxide aggravates GVHD by inducing M1 macrophage polarization in mice. Blood,2020,136(4): 501–515. DOI: 10.1182/blood.2019003990
|
[12] |
KIM S J, ZHANG X, CHO S B, et al. Uremic solutes of indoxyl sulfate and p-cresol enhance protease-activated receptor-2 expression in vitro and in vivo in keratinocytes. Hum Exp Toxicol,2021,40(1): 113–123. DOI: 10.1177/0960327120945758
|
[13] |
JIANG S, SHUI Y, CUI Y, et al. Gut microbiota dependent trimethylamine N-oxide aggravates angiotensin Ⅱ-induced hypertension. Redox Biol,2021,46: 102115. DOI: 10.1016/j.redox.2021.102115
|
[14] |
CHU H, DU C, YANG Y, et al. MC-LR aggravates liver lipid metabolism disorders in obese mice fed a high-fat diet via PI3K/AKT/mTOR/SREBP1 signaling pathway. Toxins,2022,14(12): 833. DOI: 10.3390/toxins14120833
|
[15] |
ZHOU Z, LIANG S, ZHOU Z, et al. TGF-β1 promotes SCD1 expression via the PI3K-Akt-mTOR-SREBP1 signaling pathway in lung fibroblasts. Respir,2023,24(1): 8. DOI: 10.1186/s12931-023-02313-9
|
[16] |
SHI H H, CHEN L P, WANG C C, et al. Docosahexaenoic acid-acylated curcumin diester alleviates cisplatin-induced acute kidney injury by regulating the effect of gut microbiota on the lipopolysaccharide- and trimethylamine-N-oxide-mediated PI3K/Akt/NF-κB signaling pathway in mice. Food Funct,2022,13(11): 6103–6117. DOI: 10.1039/d1fo04178a
|
[17] |
LI D, KE Y, ZHAN R, et al. Trimethylamine-N-oxide promotes brain aging and cognitive impairment in mice. Aging Cell,2018,17(4): e12768. DOI: 10.1111/acel.12768
|
[18] |
ZENG Y, GUO M, FANG X, et al. Gut microbiota-derived trimethylamine N-oxide and kidney function: a systematic review and meta-analysis. Adv Nutr,2021,12(4): 1286–1304. DOI: 10.1093/advances/nmab010
|
[19] |
FANG Q, ZHENG B, LIU N, et al. Trimethylamine N-oxide exacerbates renal inflammation and fibrosis in rats with diabetic kidney disease. Front Physiol,2021,12: 682482. DOI: 10.3389/fphys.2021.682482
|
[20] |
GUPTA N, BUFFA J A, ROBERTS A B, et al. Targeted inhibition of gut microbial trimethylamine n-oxide production reduces renal tubulointerstitial fibrosis and functional impairment in a murine model of chronic kidney disease. Arterioscl Throm Vas,2020,40(5): 1239–1255. DOI: 10.1161/ATVBAHA.120.314139
|
[21] |
LIN Y C, WU M S, LIN Y F, et al. Nifedipine modulates renal lipogenesis via the AMPK-SREBP transcriptional pathway. Int J Mol Sci,2019,20(7): 1570. DOI: 10.3390/ijms20071570
|
[22] |
GAI Z, WANG T, VISENTIN M, et al. Lipid accumulation and chronic kidney disease. Nutrients,2019,11(4): 722. DOI: 10.3390/nu11040722
|
[23] |
DOROTEA D, KOYA D, HA H. Recent insights into SREBP as a direct mediator of kidney fibrosis via lipid-independent pathways. Front Pharmacol,2020,11: 265. DOI: 10.3389/fphar.2020.00265
|
[24] |
KAPETANAKI S, KUMAWAT A K, PERSSON K, et al. The fibrotic effects of TMAO on human renal fibroblasts is mediated by NLRP3, Caspase-1 and the PERK/Akt/mTOR pathway. Int J Mol Sci,2021,22(21): 11864. DOI: 10.3390/ijms222111864
|
OPEN ACCESS This article is licensed under a Creative Commons Attribution-NonCommercial 4.0 International license (CC BY-NC 4.0). In other words, the full-text content of the journal is made freely available for third-party users to copy and redistribute in any medium or format, and to remix, transform, and build upon the content of the journal. You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may not use the content of the journal for commercial purposes. For more information about the license, visit https://creativecommons.org/licenses/by-nc/4.0