Objective To explore the protective effect of placenta-derived mesenchymal stem cells (P-MSCs) transplantation on intestinal injury in septic mice and its mechanism.
Methods A total of 24 mice were randomly assigned to 3 groups, a sham operation group, a sepsis group that underwent cecal ligation and puncture (CLP) procedure, and a group that received CLP and P-MSCs treatment. Hereinafter, the three groups are referred to as the Sham group, the CLP group, and the CLP+P-MSCs group. For the mice in the Sham group, the abdomen was cut open and the cecum was exposed and then placed back in the abdomen. CLP was performed in the other two groups to establish the sepsis model. Mice in the Sham and the CLP groups received 0.1 mL of 0.9% NaCl injection in the tail vein 1 hour after operation, while mice in the CLP+P-MSCs group received 2×105 P-MSCs infusion 1 hour after operation. Intestinal and blood specimens were collected from the mice in each group 24 hours after P-MSCs transplantation. Hematoxylin and eosin (HE) staining of the intestinal tissue was performed for pathological evaluation. The serum concentrations of D-lactic acid, diamine oxidase (DAO), endotoxin, interleukin (IL)-1β, tumor necrosis factor (TNF)-α, IL-6, IL-10, and transforming growth factor (TGF)-β were determined by enzyme linked immunosorbent assay (ELISA). The gene expression of the relevant inflammatory factors in the small intestinal tissue was determined by real-time fluorescence polymerase chain reaction. The expression of zonula occludens protein-1 (ZO-1) and occludin protein in the intestine was determined by Western blot, the infiltration of intestinal macrophages was determined by immunohistochemical method, and the polarization of macrophages was determined by immunofluorescence.
Results The exogenous transplantation of P-MSCs could form colonies in the injured intestines of septic mice. Compared with those of the CLP group, the intestinal injury of the CLP+P-MSCs group was significantly alleviated, the serum concentrations of D-lactic acid, DAO, endotoxin, IL-1β, IL-6, and TNF-α were significantly decreased (P<0.05), while the serum concentrations of IL-10 and TGF-β were significantly increased (P<0.05), the expression levels of IL-1β, TNF-α and IL-6 genes in the intestinal tissue were significantly decreased (P<0.05), while the expression levels of IL-10 and TGF-β genes were significantly increased (P<0.05), and the expression of ZO-1 and occludin proteins in the intestine was also significantly increased (P<0.05). In addition, the distribution of macrophages in the intestinal tissue of the CLP+P-MSCs group decreased significantly and the macrophages showed a tendency for M2 polarization.
Conclusion Exogenous transplantation of P-MSCs can significantly reduce inflammatory injury and improve the intestinal barrier function in septic mice with intestinal injury. Reduction in the infiltration of macrophages and promotion of the polarization of macrophages from M1 to M2 may be the mechanisms underlying the reduction of inflammation.