Citation: | TAO Ran, DING Sheng-nan, CHEN Jie, et al. Identifying Depressive Disorder With Sleep Electroencephalogram Data: A Study Based on Deep Learning[J]. Journal of Sichuan University (Medical Sciences), 2023, 54(2): 287-292. DOI: 10.12182/20230360212 |
[1] |
Organization WHO. Depression and other common mental disorders: global health estimates: World Health Organization, 2017. (2017-02)[2022-12-13].https://apps.who.int/iris/handle/10665/254610.
|
[2] |
RIEMANN D, KRONE L B, WULFF K, et al. Sleep, insomnia, and depression. Neuropsychopharmacology,2020,45(1): 74–89. DOI: 10.1038/s41386-019-0411-y
|
[3] |
NOLLET M, HICKS H, MCCARTHY A P, et al. REM sleep's unique associations with corticosterone regulation, apoptotic pathways, and behavior in chronic stress in mice. Proc Natl Acad Sci U S A,2019,116(7): 2733–2742. DOI: 10.1073/pnas.1816456116
|
[4] |
COAN A, ALLEN J. Frontal EEG asymmetry as a moderator and mediator of emotion. Biol Psychol,2004,67(1/2): 7–49. DOI: 10.1016/j.biopsycho.2004.03.002
|
[5] |
ZHAO Y, ZHANG G, ZHANG Y, et al. Multi-view cross-subject seizure detection with information bottleneck attribution. J Neural Eng,2022,19(4): 046011. DOI: 10.1088/1741-2552/ac7d0d
|
[6] |
TSIAMALOU A, DARDIOTIS E, PATERAKIS K, et al. EEG in neurorehabilitation: a bibliometric analysis and content review. Neurol Int,2022,14(4): 1046–1061. DOI: 10.3390/neurolint14040084
|
[7] |
AY B, YILDIRIM O, TALO M, et al. Automated depression detection using deep representation and sequence learning with EEG signals. J Med Syst,2019,43(7): 205. DOI: 10.1007/s10916-019-1345-y
|
[8] |
ULKE C, TENKE C E, KAYSER J, et al. Resting EEG Measures of Brain Arousal in a Multisite Study of Major Depression. Clin EEG Neurosci,2019,50(1): 3–12. DOI: 10.1177/1550059418795578
|
[9] |
ACHARYA U R, OH S L, HAGIWARA Y, et al. Automated EEG-based screening of depression using deep convolutional neural network. Comput Methods Programs Biomed,2018,161: 103–113. DOI: 10.1016/j.cmpb.2018.04.012
|
[10] |
THAKRE T P, KULKARNI H, ADAMS K S, et al. Polysomnographic identification of anxiety and depression using deep learning. J Psychiatr Res,2022,150: 54–63. DOI: 10.1016/j.jpsychires.2022.03.027
|
[11] |
BERRY R B, BROOKS R, GAMALDO C, et al. AASM scoring manual updates for 2017 (Version 2.4). J Clin Sleep Med,2017,13(5): 665–666. DOI: 10.5664/jcsm.6576
|
[12] |
张家铭, 刘丹阳, 钟冬灵, 等. 基于CiteSpac 的脑电图诊断抑郁症可视化分析的特异性研究. 生物医学工程学杂志,2021,38(5): 919–931. DOI: 10.7507/1001-5515.202101058
|
[13] |
SANTANGELI O, PORKKA T, VIRKKALA J, et al. Sleep and slow-wave activity in depressed adolescent boys: a preliminary study. Sleep Med,2017,38: 24–30. DOI: 10.1016/j.sleep.2017.06.029
|
[14] |
BLASKOVICH B, REICHARDT R, GOMBOS F, et al. Cortical hyperarousal in NREM sleep normalizes from pre- to post- REM periods in individuals with frequent nightmares. Sleep,2020,43(1): zsz201. DOI: 10.1093/sleep/zsz201
|
[15] |
NOFZINGER E A, PRICE J C, MELTZER C, et al. Towards a neurobiology of dysfunctional arousal in depression: the relationship between beta EEG power and regional cerebral glucose metabolism during NREM sleep. Psychiatry Res,2000,98(2): 71–91. DOI: 10.1016/s0925-4927(00)00045-7
|
[16] |
ALHAJ H, WISNIEWSKI G, MCALLISTER R H. The use of the EEG in measuring therapeutic drug action: focus on depression and antidepressants. J Psychopharmacol,2011,25(9): 1175–1191. DOI: 10.1177/0269881110388323
|
[17] |
LEUCHTER A F, COOK I A, HUNTER A, et al. Use of clinical neurophysiology for the selection of medication in the treatment of major depressive disorder: the state of the evidence. Clin EEG Neurosci,2009,40(2): 78–83. DOI: 10.1177/155005940904000207
|
[18] |
SUN S, LI X, ZHU J, et al. Graph theory analysis of functional connectivity in major depression disorder with high-density resting state EEG data. IEEE Trans Neural Syst Rehabil Eng,2019,27(3): 429–439. DOI: 10.1109/TNSRE.2019.2894423
|
[19] |
Van STRAATEN E C, DENHAAN J, DEWAAL H, et al. Disturbed phase relations in white matter hyperintensity based vascular dementia: an EEG directed connectivity study. Clin Neurophysiol,2015,126(3): 497–504. DOI: 10.1016/j.clinph.2014.05.018
|
[20] |
CHIANG H S, CHEN M Y, LIAO L S. Cognitive depression detection cyber-medical system based on EEG analysis and deep learning approaches. IEEE J Biomed Health Inform,2023,27(2): 608–616. DOI: 10.1109/JBHI.2022.3200522
|
[21] |
ADAMCZYK M, GAZEA M, WOLLWEBER B, et al. Cordance derived from REM sleep EEG as a biomarker for treatment response in depression--a naturalistic study after antidepressant medication. J Psychiatr Res,2015,63: 97–104. DOI: 10.1016/j.jpsychires.2015.02.007
|
[22] |
MIKOTEIT T, BRAND S, PERREN S, et al. Visually detected non-rapid eye movement stage 2 sleep spindle density at age five years predicted prosocial behavior positively and hyperactivity scores negatively at age nine years. Sleep Med,2018,48: 101–106. DOI: 10.1016/j.sleep.2018.03.028
|
[23] |
BYEON H. Application of machine learning technique to distinguish Parkinson's disease dementia and Alzheimer's dementia: predictive power of parkinson's disease-related non-motor symptoms and neuropsychological profile. J Pers Med,2020,10(2): 31. DOI: 10.3390/jpm10020031
|
[24] |
张冰涛, 周文颖, 李延林, 等. 基于脑功能网络的抑郁症识别研究. 生物医学工程学杂志,2021,39(1): 47–55. DOI: 10.7507/1001-5515.202108034
|
[25] |
DOSOVITSKIY A, BEYER L, KOLESNIKOV A, et al. An image is worth 16x16 words: transformers for image recognition at scale. arXiv:2010.11929. https://arxiv.org/abs/2010.11929v2. doi: 10.48550/arXiv.2010.11929.
|