Objective To study with quantitative computed tomography (QCT) the correlation between grip strength and physical composition and waist and hip circumferences in young people with different body mass indexes (BMIs).
Methods A total of 1310 young people who came to West China Hospital, Sichuan University for physical checkups and underwent chest QCT at our hospital from April to July 2021 were included in the study. Their data were collected and their BMIs were calculated. The subjects were divided according to their BMIs into 4 groups, underweight group (BMI<18.5 kg/m2), normal-weight group (18.5 kg/m2≤BMI<24 kg/m2), overweight group (24 kg/m2≤BMI<28 kg/m2), and obesity group (BMI≥28 kg/m2). The raw data were uploaded to QCT Mindways Pro 6.1 software to be processed for measurement of the fat content (area) of the physical components of the L2 vertebral body, including total adipose tissue (TAT), visceral adipose tissue (VAT), subcutaneous adipose tissue (SAT), and abdominal fat ratio, or VAT/SAT. Grip strength was measured with CAMRY EH101 digital grip dynamometer. Statistical analysis of the data was performed, and the correlations between grip strength and various physical components, waist circumference, and hip circumference in subjects of different BMIs were examined. In addition, stratified analysis of normal-weight and overweight subjects of different age groups was conducted.
Results In the normal-weight group, height, body mass, hip circumference and grip strength were positively correlated with grip strength in males aged 21-40 years, SAT was negatively correlated with grip strength in males aged 36-40 years, and VAT/SAT was positively correlated with grip strength in males aged 36-40 years. In normal-weight females aged 21-25 years, SAT was negatively correlated with grip strength, while VAT and VAT/SAT were positively correlated with grip strength. In normal-weight females aged 26-40 years, height, body mass, and hip circumference were positively correlated with grip strength. In normal-weight females aged 36-40 years, VAT/SAT was positively correlated with grip strength. In overweight males aged 21-25 years, hip circumference and body mass were positively correlated with grip strength. In overweight males aged 26-30 years, TAT, waist-to-hip ratio, and waist-to-height ratio were negatively correlated with grip strength. In overweight males aged 31-40 years, height and body mass were positively correlated with grip strength, while waist-to-hip ratio and waist-to-height ratio were negatively correlated with grip strength. In addition, hip circumference was positively correlated with grip strength in overweight males aged 31-35 years. In overweight females aged 21-25 years, waist circumference, hip circumference, and waist-to-height ratio were positively correlated with grip strength. In overweight females aged 26-30 years, height and body mass were positively correlated with grip strength. In overweight females aged 31-35 years, TAT, SAT, waist circumference, waist-to-hip ratio, and waist-to-height ratio were negatively correlated with grip strength. In overweight females aged 36-40 years, SAT and waist-to-height ratio were negatively correlated with grip strength, while VAT, VAT/SAT, height and body mass were positively correlated with grip strength. The height and body mass of males and females in the underweight group were positively correlated with grip strength, and the hip circumference of females in the underweight group was also positively correlated with grip strength. In the obesity group, TAT, VAT, and waist-to-height ratio were negatively correlated with grip strength in males, but no such correlation was observed in females.
Conclusion There is a close association between abdominal fat content and grip strength in young people with different BMIs, indicating that young people should control abdominal fat content and hip fat content in order to maintain the strength of corresponding muscles.