Citation: | LUO Na, SHI Rong-chen, DAI Rong-yang, et al. Cholesterol Metabolism and Tumor Immunity[J]. Journal of Sichuan University (Medical Sciences), 2022, 53(2): 335-341. DOI: 10.12182/20220360202 |
[1] |
SCHADE D S, SHEY L, EATON R P. Cholesterol review: A metabolically important molecule. Endocr Pract,2020,26(12): 1514–1523. DOI: 10.4158/EP-2020-0347
|
[2] |
SEZGIN E, LEVENTAL I, MAYOR S, et al. The mystery of membrane organization: composition, regulation and roles of lipid rafts. Nat Rev Mol Cell Biol,2017,18(6): 361–374. DOI: 10.1038/nrm.2017.16
|
[3] |
KUZU O F, NOORY M A, ROBERTSON G P. The role of cholesterol in cancer. Cancer Res,2016,76(8): 2063–2070. DOI: 10.1158/0008-5472.CAN-15-2613
|
[4] |
DING X, ZHANG W, LI S, et al. The role of cholesterol metabolism in cancer. Am J Cancer Res,2019,9(2): 219–227.
|
[5] |
AGUILAR-BALLESTER M, HERRERO-CERVERA A, VINUE A, et al. Impact of cholesterol metabolism in immune cell function and atherosclerosis. Nutrients, 2020, 12(7): doi: 10.3390/nu12072021[2021-09-19]. https://doi.org/10.3390/nu12072021.
|
[6] |
HUANG B, SONG B L, XU C. Cholesterol metabolism in cancer: Mechanisms and therapeutic opportunities. Nat Metab,2020,2(2): 132–141. DOI: 10.1038/s42255-020-0174-0
|
[7] |
SHARPE L J, BROWN A J. Controlling cholesterol synthesis beyond 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR). J Biol Chem,2013,288(26): 18707–18715. DOI: 10.1074/jbc.R113.479808
|
[8] |
GOLDSTEIN J L, BROWN M S. The LDL receptor. Arterioscler Thromb Vasc Biol,2009,29(4): 431–438. DOI: 10.1161/ATVBAHA.108.179564
|
[9] |
TONTONOZ P. Transcriptional and posttranscriptional control of cholesterol homeostasis by liver X receptors. Cold Spring Harb Symp Quant Biol, 2011, 76: 129-137[2021-09-19]. http://symposium.cshlp.org/content/76/129.long. doi: 10.1101/sqb.2011.76.010702.
|
[10] |
CHANG T Y, CHANG C C, OHGAMI N, et al. Cholesterol sensing, trafficking, and esterification. Annu Rev Cell Dev Biol,2006,22: 129–157. DOI: 10.1146/annurev.cellbio.22.010305.104656
|
[11] |
LUO J, YANG H, SONG B L. Mechanisms and regulation of cholesterol homeostasis. Nat Rev Mol Cell Biol,2020,21(4): 225–245. DOI: 10.1038/s41580-019-0190-7
|
[12] |
GONG X, QIAN H, SHAO W, et al. Complex structure of the fission yeast SREBP-SCAP binding domains reveals an oligomeric organization. Cell Res,2016,26(11): 1197–1211. DOI: 10.1038/cr.2016.123
|
[13] |
LEE J Y, KINCH L N, BOREK D M, et al. Crystal structure of the human sterol transporter ABCG5/ABCG8. Nature,2016,533(7604): 561–564. DOI: 10.1038/nature17666
|
[14] |
ZHANG L, RAJBHANDARI P, PRIEST C, et al. Inhibition of cholesterol biosynthesis through RNF145-dependent ubiquitination of SCAP. Elife, 2017, 6: e28766[2021-09-19]. https://elifesciences.org/articles/28766. doi: 10.7554/eLife.28766.
|
[15] |
JIANG L Y, JIANG W, TIAN N, et al. Ring finger protein 145 (RNF145) is a ubiquitin ligase for sterol-induced degradation of HMG-CoA reductase. J Biol Chem,2018,293(11): 4047–4055. DOI: 10.1074/jbc.RA117.001260
|
[16] |
ZELCER N, SHARPE L J, LOREGGER A, et al. The E3 ubiquitin ligase MARCH6 degrades squalene monooxygenase and affects 3-hydroxy-3-methyl-glutaryl coenzyme A reductase and the cholesterol synthesis pathway. Mol Cell Biol,2014,34(7): 1262–1270. DOI: 10.1128/MCB.01140-13
|
[17] |
ZHANG Y Y, FU Z Y, WEI J, et al. A LIMA1 variant promotes low plasma LDL cholesterol and decreases intestinal cholesterol absorption. Science,2018,360(6393): 1087–1092. DOI: 10.1126/science.aao6575
|
[18] |
WIDENMAIER S B, SNYDER N A, NGUYEN T B, et al. NRF1 is an ER membrane sensor that is central to cholesterol homeostasis. Cell, 2017, 171(5): 1094-1109.e15[2021-09-19]. https://doi.org/10.1016/j.cell.2017.10.003.
|
[19] |
SALLAM T, JONES M C, GILLILAND T, et al. Feedback modulation of cholesterol metabolism by the lipid-responsive non-coding RNA LeXis. Nature,2016,534(7605): 124–128. DOI: 10.1038/nature17674
|
[20] |
SALLAM T, JONES M, THOMAS B J, et al. Transcriptional region of macrophage cholesterol efflux and atherogenesis by a long noulatncoding RNA. Nat Med,2018,24(3): 304–312. DOI: 10.1038/nm.4479
|
[21] |
WANG Y J, BIAN Y, LUO J, et al. Cholesterol and fatty acids regulate cysteine ubiquitylation of ACAT2 through competitive oxidation. Nat Cell Biol,2017,19(7): 808–819. DOI: 10.1038/ncb3551
|
[22] |
ELIA I, HAIGIS M C. Metabolites and the tumour microenvironment: From cellular mechanisms to systemic metabolism. Nat Metab,2021,3(1): 21–32. DOI: 10.1038/s42255-020-00317-z
|
[23] |
COSTA A C, SANTOS J, GIL D C R, et al. Impact of immune cells on the hallmarks of cancer: A literature review. Crit Rev Oncol Hematol, 2021, 168: 103541[2021-09-19]. https://doi.org/10.1016/j.critrevonc.2021.103541.
|
[24] |
GONZALEZ H, HAGERLING C, WERB Z. Roles of the immune system in cancer: From tumor initiation to metastatic progression. Genes Dev,2018,32(19/20): 1267–1284. DOI: 10.1101/gad.314617.118
|
[25] |
HAO Y, LI D, XU Y, et al. Investigation of lipid metabolism dysregulation and the effects on immune microenvironments in pan-cancer using multiple omics data. BMC Bioinformatics,2019,20(Suppl 7): 195. DOI: 10.1186/s12859-019-2734-4
|
[26] |
GABRILOVICH D I, NAGARAJ S. Myeloid-derived suppressor cells as regulators of the immune system. Nat Rev Immunol,2009,9(3): 162–174. DOI: 10.1038/nri2506
|
[27] |
GABRILOVICH D I. Myeloid-derived suppressor cells. Cancer Immunol Res,2017,5(1): 3–8. DOI: 10.1158/2326-6066.CIR-16-0297
|
[28] |
CLEMENTS V K, LONG T, LONG R, et al. Frontline science: High fat diet and leptin promote tumor progression by inducing myeloid-derived suppressor cells. J Leukoc Biol,2018,103(3): 395–407. DOI: 10.1002/JLB.4HI0517-210R
|
[29] |
HE S, MA L, BAEK A E, et al. Host CYP27A1 expression is essential for ovarian cancer progression. Endocr Relat Cancer,2019,26(7): 659–675. DOI: 10.1530/ERC-18-0572
|
[30] |
MA L, WANG L, NELSON A T, et al. 27-Hydroxycholesterol acts on myeloid immune cells to induce T cell dysfunction, promoting breast cancer progression. Cancer Lett,2020,493: 266–283. DOI: 10.1016/j.canlet.2020.08.020
|
[31] |
STRAUSS L, MAHMOUD M, WEAVER J D, et al. Targeted deletion of PD-1 in myeloid cells induces antitumor immunity. Sci Immunol, 2020, 5(43): aay1863[2021-09-19]. https://doi.org/10.1126/sciimmunol.aay1863.
|
[32] |
KUMAR V, PATEL S, TCYGANOV E, et al. The nature of myeloid-derived suppressor cells in the tumor microenvironment. Trends Immunol,2016,37(3): 208–220. DOI: 10.1016/j.it.2016.01.004
|
[33] |
KEMP S B, CARPENTER E S, STEELE N G, et al. Apolipoprotein E promotes immune suppression in pancreatic cancer through NF-kappaB-mediated production of CXCL1. Cancer Res,2021,81(16): 4305–4318. DOI: 10.1158/0008-5472.CAN-20-3929
|
[34] |
TAVAZOIE M F, POLLACK I, TANQUECO R, et al. LXR/ApoE activation restricts innate immune suppression in cancer. Cell, 2018, 172(4): 825-840.e18[2021-09-19]. https://doi.org/10.1016/j.cell.2017.12.026.
|
[35] |
DENG M, GUI X, KIM J, et al. LILRB4 signalling in leukaemia cells mediates T cell suppression and tumour infiltration. Nature,2018,562(7728): 605–609. DOI: 10.1038/s41586-018-0615-z
|
[36] |
LONG K B, COLLIER A I, BEATTY G L. Macrophages: Key orchestrators of a tumor microenvironment defined by therapeutic resistance. Mol Immunol, 2019, 110: 3-12[2021-09-19]. https://doi.org/10.1016/j.molimm.2017.12.003.
|
[37] |
DENARDO D G, RUFFELL B. Macrophages as regulators of tumour immunity and immunotherapy. Nat Rev Immunol,2019,19(6): 369–382. DOI: 10.1038/s41577-019-0127-6
|
[38] |
ZAMANIAN-DARYOUSH M, LINDNER D, Tallant T C, et al. The cardioprotective protein apolipoprotein A1 promotes potent anti-tumorigenic effects. J Biol Chem,2013,288(29): 21237–21252. DOI: 10.1074/jbc.M113.468967
|
[39] |
SAG D, CEKIC C, WU R, et al. The cholesterol transporter ABCG1 links cholesterol homeostasis and tumour immunity. Nat Commun, 2015, 6: 6354[2021-09-19]. https://doi.org/10.1038/ncomms7354.
|
[40] |
GOOSSENS P, RODRIGUEZ-VITA J, ETZERODT A, et al. Membrane cholesterol efflux drives tumor-associated macrophage reprogramming and tumor progression. Cell Metab,2019,29(6): 1376–1389. DOI: 10.1016/j.cmet.2019.02.016
|
[41] |
NELSON E R, WARDELL S E, JASPER J S, et al. 27-Hydroxycholesterol links hypercholesterolemia and breast cancer pathophysiology. Science,2013,342(6162): 1094–1098. DOI: 10.1126/science.1241908
|
[42] |
SHI S Z, LEE E J, LIN Y J, et al. Recruitment of monocytes and epigenetic silencing of intratumoral CYP7B1 primarily contribute to the accumulation of 27-hydroxycholesterol in breast cancer. Am J Cancer Res,2019,9(10): 2194–2208.
|
[43] |
SON Y, KIM S M, LEE S A, et al. Oxysterols induce transition of monocytic cells to phenotypically mature dendritic cell-like cells. Biochem Biophys Res Commun,2013,438(1): 161–168. DOI: 10.1016/j.bbrc.2013.07.046
|
[44] |
SON Y, CHOI J, KIM B, et al. Cyclosporin A inhibits differentiation and activation of monocytic cells induced by 27-hydroxycholesterol. Int Immunopharmacol, 2019, 69: 358-367[2021-09-19]. https://doi.org/10.1016/j.intimp.2019.01.045.
|
[45] |
BONACINA F, COE D, WANG G, et al. Myeloid apolipoprotein E controls dendritic cell antigen presentation and T cell activation. Nat Commun,2018,9(1): 3083. DOI: 10.1038/s41467-018-05322-1
|
[46] |
RAMAKRISHNAN R, TYURIN V A, VEGLIA F, et al. Oxidized lipids block antigen cross-presentation by dendritic cells in cancer. J Immunol,2014,192(6): 2920–2931. DOI: 10.4049/jimmunol.1302801
|
[47] |
VILLABLANCA E J, RACCOSTA L, ZHOU D, et al. Tumor-mediated liver X receptor-alpha activation inhibits CC chemokine receptor-7 expression on dendritic cells and dampens antitumor responses. Nat Med,2010,16(1): 98–105. DOI: 10.1038/nm.2074
|
[48] |
CEROI A, MASSON D, ROGGY A, et al. LXR agonist treatment of blastic plasmacytoid dendritic cell neoplasm restores cholesterol efflux and triggers apoptosis. Blood,2016,128(23): 2694–2707. DOI: 10.1182/blood-2016-06-724807
|
[49] |
GRUENBACHER G, GANDER H, NUSSBAUMER O, et al. IL-2 costimulation enables statin-mediated activation of human NK cells, preferentially through a mechanism involving CD56+ dendritic cells. Cancer Res,2010,70(23): 9611–9620. DOI: 10.1158/0008-5472.CAN-10-1968
|
[50] |
LUO C, WANG K, LIU D Q, et al. The functional roles of lipid rafts in T cell activation, immune diseases and HIV infection and prevention. Cell Mol Immunol,2008,5(1): 1–7. DOI: 10.1038/cmi.2008.1
|
[51] |
YANG W, BAI Y, XIONG Y, et al. Potentiating the antitumour response of CD8+ T cells by modulating cholesterol metabolism. Nature,2016,531(7596): 651–655. DOI: 10.1038/nature17412
|
[52] |
KIDANI Y, BENSINGER S J. Modulating cholesterol homeostasis to build a better T cell. Cell Metab,2016,23(6): 963–964. DOI: 10.1016/j.cmet.2016.05.015
|
[53] |
HAO M, HOU S, LI W, et al. Combination of metabolic intervention and T cell therapy enhances solid tumor immunotherapy. Sci Transl Med, 2020, 12(571): eaaz6667[2021-09-19]. https://doi.org/10.1126/scitranslmed.aaz6667.
|
[54] |
KHALIL D N, SMITH E L, BRENTJENS R J, et al. The future of cancer treatment: Immunomodulation, CARs and combination immunotherapy. Nat Rev Clin Oncol,2016,13(5): 273–290. DOI: 10.1038/nrclinonc.2016.25
|
[55] |
ZHAO L, LI J, LIU Y, et al. Cholesterol esterification enzyme inhibition enhances antitumor effects of human chimeric antigen receptors modified T cells. J Immunother,2018,41(2): 45–52. DOI: 10.1097/CJI.0000000000000207
|
[56] |
LEE I K, SONG H, KIM H, et al. RORalpha regulates cholesterol metabolism of CD8+ T cells for anticancer immunity. Cancers,2020,12(7): 1733. DOI: 10.3390/cancers12071733
|
[57] |
MA X, BI E, LU Y, et al. Cholesterol induces CD8+ T cell exhaustion in the tumor microenvironment. Cell Metab,2019,30(1): 143–156. DOI: 10.1016/j.cmet.2019.04.002
|
[58] |
WANG Y, YOU S, SU S, et al. Cholesterol-lowering intervention decreases mTOR complex 2 signaling and enhances antitumor immunity. Clin Cancer Res,2021,28(2): 414–424. DOI: 10.1158/1078-0432.CCR-21-1535
|
[59] |
MOSES K, BRANDAU S. Human neutrophils: Their role in cancer and relation to myeloid-derived suppressor cells. Semin Immunol,2016,28(2): 187–196. DOI: 10.1016/j.smim.2016.03.018
|
[60] |
RACCOSTA L, FONTANA R, MAGGIONI D, et al. The oxysterol-CXCR2 axis plays a key role in the recruitment of tumor-promoting neutrophils. J Exp Med,2013,210(9): 1711–1728. DOI: 10.1084/jem.20130440
|
[61] |
SONCINI M, CORNA G, MORESCO M, et al. 24-Hydroxycholesterol participates in pancreatic neuroendocrine tumor development. Proc Natl Acad Sci U S A, 2016, 113(41): E6219−E6227[2021-09-19]. https://doi.org/10.1073/pnas.1613332113.
|
[62] |
QIN W H, YANG Z S, LI M, et al. High serum levels of cholesterol increase antitumor functions of nature killer cells and reduce growth of liver tumors in mice. Gastroenterology,2020,158(6): 1713–1727. DOI: 10.1053/j.gastro.2020.01.028
|
[63] |
BILOTTA M T, ABRUZZESE M P, MOLFETTA R, et al. Activation of liver X receptor up-regulates the expression of the NKG2D ligands MICA and MICB in multiple myeloma through different molecular mechanisms. FASEB J,2019,33(8): 9489–9504. DOI: 10.1096/fj.201900319R
|
[64] |
BIBBY J A, PURVIS H A, HAYDAY T, et al. Cholesterol metabolism drives regulatory B cell IL-10 through provision of geranylgeranyl pyrophosphate. Nat Commun,2020,11(1): 3412. DOI: 10.1038/s41467-020-17179-4
|
[65] |
RISCAL R, SKULI N, SIMON M C. Even cancer cells watch their cholesterol! Mol Cell, 2019, 76(2): 220−231.
|