Welcome to JOURNAL OF SICHUAN UNIVERSITY (MEDICAL SCIENCES) June 11, 2025
LUO Na, SHI Rong-chen, DAI Rong-yang, et al. Cholesterol Metabolism and Tumor Immunity[J]. Journal of Sichuan University (Medical Sciences), 2022, 53(2): 335-341. DOI: 10.12182/20220360202
Citation: LUO Na, SHI Rong-chen, DAI Rong-yang, et al. Cholesterol Metabolism and Tumor Immunity[J]. Journal of Sichuan University (Medical Sciences), 2022, 53(2): 335-341. DOI: 10.12182/20220360202

Cholesterol Metabolism and Tumor Immunity

More Information
  • Corresponding author:

    MIAO Hong-ming, E-mail: hongmingmiao@sina.com

  • Received Date: September 30, 2021
  • Revised Date: February 17, 2022
  • Available Online: March 21, 2022
  • Published Date: March 19, 2022
  • Cholesterol, an important lipid molecule of organisms, is involved in the formation of cell membrane structure, bile acid metabolism and steroid hormone synthesis, playing an important role in the regulation of cell structure and functions. In recent years, a large number of studies have shown that cholesterol metabolism is reprogrammed during tumor formation and development. In addition to directly affecting the biological behavior of tumor cells, cholesterol metabolic reprogramming also regulates the antitumor activity of immune cells in the tumor microenvironment. We reviewed herein the cholesterol metabolism reprogramming of and interactions among immune cells including myeloid-derived suppressor cells (MDSCs), tumor-associated macrophages (TAMs), dendritic cells (DCs), and T cells in the tumor microenvironment. However, the relationship between cholesterol metabolism and tumor immunity in tumor microenvironment is complex and diversified. The differences and similarities of cholesterol metabolism reprogramming in tumor microenvironment in regulating immune cell activity and the specific regulatory mechanism are still unresolved issues. Targeted intervention of the cholesterol metabolism pathway of immune cells is expected to become a new strategy of cholesterol metabolism in tumor immunotherapy.
  • [1]
    SCHADE D S, SHEY L, EATON R P. Cholesterol review: A metabolically important molecule. Endocr Pract,2020,26(12): 1514–1523. DOI: 10.4158/EP-2020-0347
    [2]
    SEZGIN E, LEVENTAL I, MAYOR S, et al. The mystery of membrane organization: composition, regulation and roles of lipid rafts. Nat Rev Mol Cell Biol,2017,18(6): 361–374. DOI: 10.1038/nrm.2017.16
    [3]
    KUZU O F, NOORY M A, ROBERTSON G P. The role of cholesterol in cancer. Cancer Res,2016,76(8): 2063–2070. DOI: 10.1158/0008-5472.CAN-15-2613
    [4]
    DING X, ZHANG W, LI S, et al. The role of cholesterol metabolism in cancer. Am J Cancer Res,2019,9(2): 219–227.
    [5]
    AGUILAR-BALLESTER M, HERRERO-CERVERA A, VINUE A, et al. Impact of cholesterol metabolism in immune cell function and atherosclerosis. Nutrients, 2020, 12(7): doi: 10.3390/nu12072021[2021-09-19]. https://doi.org/10.3390/nu12072021.
    [6]
    HUANG B, SONG B L, XU C. Cholesterol metabolism in cancer: Mechanisms and therapeutic opportunities. Nat Metab,2020,2(2): 132–141. DOI: 10.1038/s42255-020-0174-0
    [7]
    SHARPE L J, BROWN A J. Controlling cholesterol synthesis beyond 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR). J Biol Chem,2013,288(26): 18707–18715. DOI: 10.1074/jbc.R113.479808
    [8]
    GOLDSTEIN J L, BROWN M S. The LDL receptor. Arterioscler Thromb Vasc Biol,2009,29(4): 431–438. DOI: 10.1161/ATVBAHA.108.179564
    [9]
    TONTONOZ P. Transcriptional and posttranscriptional control of cholesterol homeostasis by liver X receptors. Cold Spring Harb Symp Quant Biol, 2011, 76: 129-137[2021-09-19]. http://symposium.cshlp.org/content/76/129.long. doi: 10.1101/sqb.2011.76.010702.
    [10]
    CHANG T Y, CHANG C C, OHGAMI N, et al. Cholesterol sensing, trafficking, and esterification. Annu Rev Cell Dev Biol,2006,22: 129–157. DOI: 10.1146/annurev.cellbio.22.010305.104656
    [11]
    LUO J, YANG H, SONG B L. Mechanisms and regulation of cholesterol homeostasis. Nat Rev Mol Cell Biol,2020,21(4): 225–245. DOI: 10.1038/s41580-019-0190-7
    [12]
    GONG X, QIAN H, SHAO W, et al. Complex structure of the fission yeast SREBP-SCAP binding domains reveals an oligomeric organization. Cell Res,2016,26(11): 1197–1211. DOI: 10.1038/cr.2016.123
    [13]
    LEE J Y, KINCH L N, BOREK D M, et al. Crystal structure of the human sterol transporter ABCG5/ABCG8. Nature,2016,533(7604): 561–564. DOI: 10.1038/nature17666
    [14]
    ZHANG L, RAJBHANDARI P, PRIEST C, et al. Inhibition of cholesterol biosynthesis through RNF145-dependent ubiquitination of SCAP. Elife, 2017, 6: e28766[2021-09-19]. https://elifesciences.org/articles/28766. doi: 10.7554/eLife.28766.
    [15]
    JIANG L Y, JIANG W, TIAN N, et al. Ring finger protein 145 (RNF145) is a ubiquitin ligase for sterol-induced degradation of HMG-CoA reductase. J Biol Chem,2018,293(11): 4047–4055. DOI: 10.1074/jbc.RA117.001260
    [16]
    ZELCER N, SHARPE L J, LOREGGER A, et al. The E3 ubiquitin ligase MARCH6 degrades squalene monooxygenase and affects 3-hydroxy-3-methyl-glutaryl coenzyme A reductase and the cholesterol synthesis pathway. Mol Cell Biol,2014,34(7): 1262–1270. DOI: 10.1128/MCB.01140-13
    [17]
    ZHANG Y Y, FU Z Y, WEI J, et al. A LIMA1 variant promotes low plasma LDL cholesterol and decreases intestinal cholesterol absorption. Science,2018,360(6393): 1087–1092. DOI: 10.1126/science.aao6575
    [18]
    WIDENMAIER S B, SNYDER N A, NGUYEN T B, et al. NRF1 is an ER membrane sensor that is central to cholesterol homeostasis. Cell, 2017, 171(5): 1094-1109.e15[2021-09-19]. https://doi.org/10.1016/j.cell.2017.10.003.
    [19]
    SALLAM T, JONES M C, GILLILAND T, et al. Feedback modulation of cholesterol metabolism by the lipid-responsive non-coding RNA LeXis. Nature,2016,534(7605): 124–128. DOI: 10.1038/nature17674
    [20]
    SALLAM T, JONES M, THOMAS B J, et al. Transcriptional region of macrophage cholesterol efflux and atherogenesis by a long noulatncoding RNA. Nat Med,2018,24(3): 304–312. DOI: 10.1038/nm.4479
    [21]
    WANG Y J, BIAN Y, LUO J, et al. Cholesterol and fatty acids regulate cysteine ubiquitylation of ACAT2 through competitive oxidation. Nat Cell Biol,2017,19(7): 808–819. DOI: 10.1038/ncb3551
    [22]
    ELIA I, HAIGIS M C. Metabolites and the tumour microenvironment: From cellular mechanisms to systemic metabolism. Nat Metab,2021,3(1): 21–32. DOI: 10.1038/s42255-020-00317-z
    [23]
    COSTA A C, SANTOS J, GIL D C R, et al. Impact of immune cells on the hallmarks of cancer: A literature review. Crit Rev Oncol Hematol, 2021, 168: 103541[2021-09-19]. https://doi.org/10.1016/j.critrevonc.2021.103541.
    [24]
    GONZALEZ H, HAGERLING C, WERB Z. Roles of the immune system in cancer: From tumor initiation to metastatic progression. Genes Dev,2018,32(19/20): 1267–1284. DOI: 10.1101/gad.314617.118
    [25]
    HAO Y, LI D, XU Y, et al. Investigation of lipid metabolism dysregulation and the effects on immune microenvironments in pan-cancer using multiple omics data. BMC Bioinformatics,2019,20(Suppl 7): 195. DOI: 10.1186/s12859-019-2734-4
    [26]
    GABRILOVICH D I, NAGARAJ S. Myeloid-derived suppressor cells as regulators of the immune system. Nat Rev Immunol,2009,9(3): 162–174. DOI: 10.1038/nri2506
    [27]
    GABRILOVICH D I. Myeloid-derived suppressor cells. Cancer Immunol Res,2017,5(1): 3–8. DOI: 10.1158/2326-6066.CIR-16-0297
    [28]
    CLEMENTS V K, LONG T, LONG R, et al. Frontline science: High fat diet and leptin promote tumor progression by inducing myeloid-derived suppressor cells. J Leukoc Biol,2018,103(3): 395–407. DOI: 10.1002/JLB.4HI0517-210R
    [29]
    HE S, MA L, BAEK A E, et al. Host CYP27A1 expression is essential for ovarian cancer progression. Endocr Relat Cancer,2019,26(7): 659–675. DOI: 10.1530/ERC-18-0572
    [30]
    MA L, WANG L, NELSON A T, et al. 27-Hydroxycholesterol acts on myeloid immune cells to induce T cell dysfunction, promoting breast cancer progression. Cancer Lett,2020,493: 266–283. DOI: 10.1016/j.canlet.2020.08.020
    [31]
    STRAUSS L, MAHMOUD M, WEAVER J D, et al. Targeted deletion of PD-1 in myeloid cells induces antitumor immunity. Sci Immunol, 2020, 5(43): aay1863[2021-09-19]. https://doi.org/10.1126/sciimmunol.aay1863.
    [32]
    KUMAR V, PATEL S, TCYGANOV E, et al. The nature of myeloid-derived suppressor cells in the tumor microenvironment. Trends Immunol,2016,37(3): 208–220. DOI: 10.1016/j.it.2016.01.004
    [33]
    KEMP S B, CARPENTER E S, STEELE N G, et al. Apolipoprotein E promotes immune suppression in pancreatic cancer through NF-kappaB-mediated production of CXCL1. Cancer Res,2021,81(16): 4305–4318. DOI: 10.1158/0008-5472.CAN-20-3929
    [34]
    TAVAZOIE M F, POLLACK I, TANQUECO R, et al. LXR/ApoE activation restricts innate immune suppression in cancer. Cell, 2018, 172(4): 825-840.e18[2021-09-19]. https://doi.org/10.1016/j.cell.2017.12.026.
    [35]
    DENG M, GUI X, KIM J, et al. LILRB4 signalling in leukaemia cells mediates T cell suppression and tumour infiltration. Nature,2018,562(7728): 605–609. DOI: 10.1038/s41586-018-0615-z
    [36]
    LONG K B, COLLIER A I, BEATTY G L. Macrophages: Key orchestrators of a tumor microenvironment defined by therapeutic resistance. Mol Immunol, 2019, 110: 3-12[2021-09-19]. https://doi.org/10.1016/j.molimm.2017.12.003.
    [37]
    DENARDO D G, RUFFELL B. Macrophages as regulators of tumour immunity and immunotherapy. Nat Rev Immunol,2019,19(6): 369–382. DOI: 10.1038/s41577-019-0127-6
    [38]
    ZAMANIAN-DARYOUSH M, LINDNER D, Tallant T C, et al. The cardioprotective protein apolipoprotein A1 promotes potent anti-tumorigenic effects. J Biol Chem,2013,288(29): 21237–21252. DOI: 10.1074/jbc.M113.468967
    [39]
    SAG D, CEKIC C, WU R, et al. The cholesterol transporter ABCG1 links cholesterol homeostasis and tumour immunity. Nat Commun, 2015, 6: 6354[2021-09-19]. https://doi.org/10.1038/ncomms7354.
    [40]
    GOOSSENS P, RODRIGUEZ-VITA J, ETZERODT A, et al. Membrane cholesterol efflux drives tumor-associated macrophage reprogramming and tumor progression. Cell Metab,2019,29(6): 1376–1389. DOI: 10.1016/j.cmet.2019.02.016
    [41]
    NELSON E R, WARDELL S E, JASPER J S, et al. 27-Hydroxycholesterol links hypercholesterolemia and breast cancer pathophysiology. Science,2013,342(6162): 1094–1098. DOI: 10.1126/science.1241908
    [42]
    SHI S Z, LEE E J, LIN Y J, et al. Recruitment of monocytes and epigenetic silencing of intratumoral CYP7B1 primarily contribute to the accumulation of 27-hydroxycholesterol in breast cancer. Am J Cancer Res,2019,9(10): 2194–2208.
    [43]
    SON Y, KIM S M, LEE S A, et al. Oxysterols induce transition of monocytic cells to phenotypically mature dendritic cell-like cells. Biochem Biophys Res Commun,2013,438(1): 161–168. DOI: 10.1016/j.bbrc.2013.07.046
    [44]
    SON Y, CHOI J, KIM B, et al. Cyclosporin A inhibits differentiation and activation of monocytic cells induced by 27-hydroxycholesterol. Int Immunopharmacol, 2019, 69: 358-367[2021-09-19]. https://doi.org/10.1016/j.intimp.2019.01.045.
    [45]
    BONACINA F, COE D, WANG G, et al. Myeloid apolipoprotein E controls dendritic cell antigen presentation and T cell activation. Nat Commun,2018,9(1): 3083. DOI: 10.1038/s41467-018-05322-1
    [46]
    RAMAKRISHNAN R, TYURIN V A, VEGLIA F, et al. Oxidized lipids block antigen cross-presentation by dendritic cells in cancer. J Immunol,2014,192(6): 2920–2931. DOI: 10.4049/jimmunol.1302801
    [47]
    VILLABLANCA E J, RACCOSTA L, ZHOU D, et al. Tumor-mediated liver X receptor-alpha activation inhibits CC chemokine receptor-7 expression on dendritic cells and dampens antitumor responses. Nat Med,2010,16(1): 98–105. DOI: 10.1038/nm.2074
    [48]
    CEROI A, MASSON D, ROGGY A, et al. LXR agonist treatment of blastic plasmacytoid dendritic cell neoplasm restores cholesterol efflux and triggers apoptosis. Blood,2016,128(23): 2694–2707. DOI: 10.1182/blood-2016-06-724807
    [49]
    GRUENBACHER G, GANDER H, NUSSBAUMER O, et al. IL-2 costimulation enables statin-mediated activation of human NK cells, preferentially through a mechanism involving CD56+ dendritic cells. Cancer Res,2010,70(23): 9611–9620. DOI: 10.1158/0008-5472.CAN-10-1968
    [50]
    LUO C, WANG K, LIU D Q, et al. The functional roles of lipid rafts in T cell activation, immune diseases and HIV infection and prevention. Cell Mol Immunol,2008,5(1): 1–7. DOI: 10.1038/cmi.2008.1
    [51]
    YANG W, BAI Y, XIONG Y, et al. Potentiating the antitumour response of CD8+ T cells by modulating cholesterol metabolism. Nature,2016,531(7596): 651–655. DOI: 10.1038/nature17412
    [52]
    KIDANI Y, BENSINGER S J. Modulating cholesterol homeostasis to build a better T cell. Cell Metab,2016,23(6): 963–964. DOI: 10.1016/j.cmet.2016.05.015
    [53]
    HAO M, HOU S, LI W, et al. Combination of metabolic intervention and T cell therapy enhances solid tumor immunotherapy. Sci Transl Med, 2020, 12(571): eaaz6667[2021-09-19]. https://doi.org/10.1126/scitranslmed.aaz6667.
    [54]
    KHALIL D N, SMITH E L, BRENTJENS R J, et al. The future of cancer treatment: Immunomodulation, CARs and combination immunotherapy. Nat Rev Clin Oncol,2016,13(5): 273–290. DOI: 10.1038/nrclinonc.2016.25
    [55]
    ZHAO L, LI J, LIU Y, et al. Cholesterol esterification enzyme inhibition enhances antitumor effects of human chimeric antigen receptors modified T cells. J Immunother,2018,41(2): 45–52. DOI: 10.1097/CJI.0000000000000207
    [56]
    LEE I K, SONG H, KIM H, et al. RORalpha regulates cholesterol metabolism of CD8+ T cells for anticancer immunity. Cancers,2020,12(7): 1733. DOI: 10.3390/cancers12071733
    [57]
    MA X, BI E, LU Y, et al. Cholesterol induces CD8+ T cell exhaustion in the tumor microenvironment. Cell Metab,2019,30(1): 143–156. DOI: 10.1016/j.cmet.2019.04.002
    [58]
    WANG Y, YOU S, SU S, et al. Cholesterol-lowering intervention decreases mTOR complex 2 signaling and enhances antitumor immunity. Clin Cancer Res,2021,28(2): 414–424. DOI: 10.1158/1078-0432.CCR-21-1535
    [59]
    MOSES K, BRANDAU S. Human neutrophils: Their role in cancer and relation to myeloid-derived suppressor cells. Semin Immunol,2016,28(2): 187–196. DOI: 10.1016/j.smim.2016.03.018
    [60]
    RACCOSTA L, FONTANA R, MAGGIONI D, et al. The oxysterol-CXCR2 axis plays a key role in the recruitment of tumor-promoting neutrophils. J Exp Med,2013,210(9): 1711–1728. DOI: 10.1084/jem.20130440
    [61]
    SONCINI M, CORNA G, MORESCO M, et al. 24-Hydroxycholesterol participates in pancreatic neuroendocrine tumor development. Proc Natl Acad Sci U S A, 2016, 113(41): E6219−E6227[2021-09-19]. https://doi.org/10.1073/pnas.1613332113.
    [62]
    QIN W H, YANG Z S, LI M, et al. High serum levels of cholesterol increase antitumor functions of nature killer cells and reduce growth of liver tumors in mice. Gastroenterology,2020,158(6): 1713–1727. DOI: 10.1053/j.gastro.2020.01.028
    [63]
    BILOTTA M T, ABRUZZESE M P, MOLFETTA R, et al. Activation of liver X receptor up-regulates the expression of the NKG2D ligands MICA and MICB in multiple myeloma through different molecular mechanisms. FASEB J,2019,33(8): 9489–9504. DOI: 10.1096/fj.201900319R
    [64]
    BIBBY J A, PURVIS H A, HAYDAY T, et al. Cholesterol metabolism drives regulatory B cell IL-10 through provision of geranylgeranyl pyrophosphate. Nat Commun,2020,11(1): 3412. DOI: 10.1038/s41467-020-17179-4
    [65]
    RISCAL R, SKULI N, SIMON M C. Even cancer cells watch their cholesterol! Mol Cell, 2019, 76(2): 220−231.
  • Cited by

    Periodical cited type(8)

    1. 王泽峰,程帆. 脂质代谢重编程在前列腺癌免疫微环境中的研究进展. 中华实验外科杂志. 2025(01): 192-196 .
    2. 李琳. 细胞膜结构脂质与膜流动性影响肿瘤侵袭转移的研究进展. 药学学报. 2024(03): 520-531 .
    3. 臧炫月,王明星,张刘仟,文柯. 血清TC、TG及ApoB在输血后脂质代谢监测中的应用价值. 分子诊断与治疗杂志. 2024(11): 2202-2205+2210 .
    4. 张舒颖,夏海龙. 血脂和载脂蛋白水平与多发性骨髓瘤贫血的相关性. 医学信息. 2023(04): 136-139 .
    5. 张玉冬,魏后忆,&王润锦,蒋铭心,杨坤,王明帅,瓦斯里江·瓦哈甫,宋黎明,金木兰,邢念增,牛亦农. 回肠通道术术前营养控制状态评分对判断膀胱癌患者预后的价值. 首都医科大学学报. 2023(03): 449-456 .
    6. 周雅青,龚行楚. 络合法提取胆固醇的研究进展. 华西药学杂志. 2023(06): 711-717 .
    7. 陈丝,宋囡,王莹,冷雪,王群,王杰,贾连群. 香砂六君子汤调节IL-10/Npc1L1/肠道胆固醇稳态途径改善脾虚高脂血症大鼠肝脏脂质沉积的机制研究. 时珍国医国药. 2023(12): 2837-2840 .
    8. 马小莉,马伟军,袁浩,叶玉伟,郑亚,王玉平,姬瑞. 幽门螺杆菌胆固醇糖基化及其免疫逃逸机制的研究进展. 现代消化及介入诊疗. 2022(10): 1339-1342 .

    Other cited types(6)

Catalog

    Article views (2627) PDF downloads (264) Cited by(14)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return