Citation: | JI Li-wei, DENG Yan, LI Tao. Effect of Ketone Body β-Hydroxybutyrate to Attenuate Inflammation-Induced Mitochondrial Oxidative Stress in Vascular Endothelial Cells[J]. Journal of Sichuan University (Medical Sciences), 2021, 52(6): 954-959. DOI: 10.12182/20211160202 |
[1] |
SIES H. Oxidative stress: a concept in redox biology and medicine. Redox Biol,2015,4: 180–183. DOI: 10.1016/j.redox.2015.01.002
|
[2] |
MURPHY M P, HOLMGREN A, LARSSON N G, et al. Unraveling the biological roles of reactive oxygen species. Cell Metab,2011,13(4): 361–366. DOI: 10.1016/j.cmet.2011.03.010
|
[3] |
PIZZINO G, IRRERA N, CUCINOTTA M, et al. Oxidative stress: Harms and benefits for human health. Oxid Med Cell Longev,2017,2017: 8416763[2021-03-09]. https://doi.org/10.1155/2017/8416763.
|
[4] |
SHADEL G S, HORVATH T L. Mitochondrial ROS signaling in organismal homeostasis. Cell,2015,163(3): 560–569. DOI: 10.1016/j.cell.2015.10.001
|
[5] |
WILLEMS P H, ROSSIGNOL R, DIETEREN C E, et al. Redox homeostasis and mitochondrial dynamics. Cell Metab,2015,22(2): 207–218. DOI: 10.1016/j.cmet.2015.06.006
|
[6] |
POPRAC P, JOMOVA K, SIMUNKOVA M, et al. Targeting free radicals in oxidative stress-related human diseases. Trends Pharmacol Sci,2017,38(7): 592–607. DOI: 10.1016/j.tips.2017.04.005
|
[7] |
STEVEN S, FRENIS K, OELZE M, et al. Vascular inflammation and oxidative stress: Major triggers for cardiovascular disease. Oxid Med Cell Longev,2019,2019: 7092151[2021-03-09]. https://doi.org/10.1155/2019/7092151.
|
[8] |
SHAO Y, SAREDY J, YANG W Y, et al. Vascular endothelial cells and innate immunity. Arterioscler Thromb Vasc Biol,2020,40(6): e138–e152[2021-03-11]. https://doi.org/10.1161/ATVBAHA.120.314330.
|
[9] |
BRETON-ROMERO R, LAMAS S. Hydrogen peroxide signaling in vascular endothelial cells. Redox Biol,2014,2: 529–534[2021-03-09]. https://doi.org/10.1016/j.redox.2014.02.005.
|
[10] |
YOUM Y H, NGUYEN K Y, GRANT R W, et al. The ketone metabolite beta-hydroxybutyrate blocks NLRP3 inflammasome-mediated inflammatory disease. Nat Med,2015,21(3): 263–269. DOI: 10.1038/nm.3804
|
[11] |
DAYANG E Z, PLANTINGA J, TER ELLEN B, et al. Identification of LPS-activated endothelial subpopulations with distinct inflammatory phenotypes and regulatory signaling mechanisms. Front Immunol,2019,10: 1169021-03-09]. https://doi.org/10.3389/fimmu.2019.01169.
|
[12] |
PUCHALSKA P, CRAWFORD P A. Multi-dimensional roles of ketone bodies in fuel metabolism, signaling, and therapeutics. Cell Metab,2017,25(2): 262–284. DOI: 10.1016/j.cmet.2016.12.022
|
[13] |
CHENG C W, BITON M, HABER A L, et al. Ketone body signaling mediates intestinal stem cell homeostasis and adaptation to diet. Cell,2019,178(5): 1115–1131.e1115. DOI: 10.1016/j.cell.2019.07.048
|
[14] |
COX P J, KIRK T, ASHMORE T, et al. Nutritional ketosis alters fuel preference and thereby endurance performance in athletes. Cell Metab,2016,24(2): 256–268. DOI: 10.1016/j.cmet.2016.07.010
|
[15] |
SHIMAZU T, HIRSCHEY M D, NEWMAN J, et al. Suppression of oxidative stress by β-hydroxybutyrate, an endogenous histone deacetylase inhibitor. Science,2013,339(6116): 211–214. DOI: 10.1126/science.1227166
|
[16] |
DENG Y, XIE M, LI Q, et al. Targeting mitochondria-inflammation circuit by beta-hydroxybutyrate mitigates HFpEF. Circ Res,2021,128(2): 232–245. DOI: 10.1161/CIRCRESAHA.120.317933
|
[17] |
RAFII S, BUTLER J M, DING B S. Angiocrine functions of organ-specific endothelial cells. Nature,2016,529(7586): 316–325. DOI: 10.1038/nature17040
|
[18] |
ANGELOVA P R, ABRAMOV A Y. Functional role of mitochondrial reactive oxygen species in physiology. Free Radic Biol Med,2016,100: 81–85. DOI: 10.1016/j.freeradbiomed.2016.06.005
|
[19] |
SUGAMURA K, KEANEY J F, Jr. Reactive oxygen species in cardiovascular disease. Free Radic Biol Med,2011,51(5): 978–992. DOI: 10.1016/j.freeradbiomed.2011.05.004
|
[20] |
SIES H, JONES D P. Reactive oxygen species (ROS) as pleiotropic physiological signalling agents. Nat Rev Mol Cell Biol,2020,21(7): 363–383. DOI: 10.1038/s41580-020-0230-3
|
[21] | |
[22] |
MENZIES K J, ZHANG H, KATSYUBA E, et al. Protein acetylation in metabolism—Metabolites and cofactors. Nat Rev Endocrinol,2016,12(1): 43–60. DOI: 10.1038/nrendo.2015.181
|
[23] |
KLOTZ L O, SANCHEZ-RAMOS C, PRIETO-ARROYO I, et al. Redox regulation of FoxO transcription factors. Redox Biol,2015,6: 51–72. DOI: 10.1016/j.redox.2015.06.019
|
[24] |
PIETROCOLA F, GALLUZZI L, BRAVO-SAN PEDRO J M, et al. Acetyl coenzyme A: A central metabolite and second messenger. Cell Metab,2015,21(6): 805–821. DOI: 10.1016/j.cmet.2015.05.014
|