Welcome to JOURNAL OF SICHUAN UNIVERSITY (MEDICAL SCIENCES) June 11, 2025
LI Zhou-yue, YANG Xiao. Mechanism of Bruch’s Membrane in the Occurrence and Development of Myopia[J]. Journal of Sichuan University (Medical Sciences), 2021, 52(6): 913-916. DOI: 10.12182/20211160101
Citation: LI Zhou-yue, YANG Xiao. Mechanism of Bruch’s Membrane in the Occurrence and Development of Myopia[J]. Journal of Sichuan University (Medical Sciences), 2021, 52(6): 913-916. DOI: 10.12182/20211160101

Mechanism of Bruch’s Membrane in the Occurrence and Development of Myopia

More Information
  • Corresponding author:

    YANG Xiao, E-mail: Yangx_zoc@163.com

  • Received Date: July 28, 2021
  • Revised Date: October 08, 2021
  • Available Online: November 28, 2021
  • Published Date: November 19, 2021
  • Myopia is a process of ocular wall remodeling along with axial elongation after emmetropia decompensation, but the causal relationship among the changes taking place in ocular fundus structures during this process is not clear. The choroid, which lies between the retina and the sclera, plays an important role in the transmission of information related to myopia. The role of choroid in myopia is a hot research topic at present. Findings from animal experiments showed that form deprivation-induced changes in choroidal thickness may be related to the vascular perfusion, but the triggering mechanism of choroidal perfusion changes during the process of myopia still needs to to be further explored. Bruch’s membrane is an elastic membrane located in the front of the choroid with good contractile properties. In the process of myopia, regional changes of the synthesis or biomechanics of Bruch’s membrane may have formed the earliest structural basis of changes in choroidal thickness and blood flow. Taking choroidal thickness as a starting point, this paper focuses on the role and mechanism of Bruch’s membrane in the occurrence and development of myopia, which may further deepen our understanding of the mechanism of changes in choroidal thickness, and provide a theoretical basis for the development of new therapeutic targets for myopia.
  • [1]
    MORGAN I G, OHNO-MATSUI K, SAW S M. Myopia. Lancet,2012,379(9827): 1739–1748. DOI: 10.1016/S0140-6736(12)60272-4
    [2]
    HOLDEN B A, FRICKE T R, WILSON D A, et al. Global prevalence of myopia and high myopia and temporal trends from 2000 through 2050. Ophthalmology,2016,123(5): 1036–1042. DOI: 10.1016/j.ophtha.2016.01.006
    [3]
    JAGADEESH D, PHILIP K, FEDTKE C, et al. Posterior segment conditions associated with myopia and high myopia. Clin Exp Optom,2020,103(6): 756–765. DOI: 10.1111/cxo.13060
    [4]
    GUO X, XIAO O, CHEN Y, et al. Three-dimensional eye shape, myopic maculopathy, and visual acuity: The Zhongshan Ophthalmic Center-Brien Holden Vision Institute high myopia cohort study. Ophthalmology,2017,124(5): 679–687. DOI: 10.1016/j.ophtha.2017.01.009
    [5]
    WEI W B, XU L, JONAS J B, et al. Subfoveal choroidal thickness: The Beijing eye study. Ophthalmology,2013,120(1): 175–180. DOI: 10.1016/j.ophtha.2012.07.048
    [6]
    PHASUKKIJWATANA N, THAWEERATTANASILP W, LAOTAWEERUNGSAWAT S, et al. Enhanced depth imaging spectral-domain optical coherence tomography of the choroid in Thai population. J Med Assoc Thai,2014,97(9): 947–953.
    [7]
    CHOH V, LEW M Y, NADEL M W, et al. Effects of interchanging hyperopic defocus and form deprivation stimuli in normal and optic nerve-sectioned chicks. Vision Res,2006,46(6/7): 1070–1079. DOI: 10.1016/j.visres.2005.08.020
    [8]
    NICKLA D L, JORDAN K, YANG J, et al. Brief hyperopic defocus or form deprivation have varying effects on eye growth and ocular rhythms depending on the time-of-day of exposure. Exp Eye Res,2017,161: 132–142. DOI: 10.1016/j.exer.2017.06.003
    [9]
    LEUBE A, KOSTIAL S, ALEX OCHAKOVSKI G, et al. Symmetric visual response to positive and negative induced spherical defocus under monochromatic light conditions. Vision Res,2018,143: 52–57. DOI: 10.1016/j.visres.2017.12.003
    [10]
    NICKLA D L. The phase relationships between the diurnal rhythms in axial length and choroidal thickness and the association with ocular growth rate in chicks. J Comp Physiol A Neuroethol Sens Neural Behav Physiol,2006,192(4): 399–407. DOI: 10.1007/s00359-005-0077-2
    [11]
    LI Z, CUI D, HU Y, et al. Choroidal thickness and axial length changes in myopic children treated with orthokeratology. Cont Lens Anterior Eye,2017,40(6): 417–423. DOI: 10.1016/j.clae.2017.09.010
    [12]
    LI Z, HU Y, CUI D, et al. Change in subfoveal choroidal thickness secondary to orthokeratology and its cessation: A predictor for the change in axial length. Acta Ophthalmol,2019,97(3): e454–e459[2021-05-08] . https://doi.org/10.1111/aos.13866.
    [13]
    WU H, CHEN W, ZHAO F, et al. Scleral hypoxia is a target for myopia control. Proc Natl Acad Sci U S A,2018,115(30): E7091–E71002[021-05-08] . https://doi.org/10.1073/pnas.1721443115.
    [14]
    METLAPALLY R, WILDSOET C F. Scleral mechanisms underlying ocular growth and myopia. Prog Mol Biol Transl Sci,2015,134: 241–248. DOI: 10.1016/bs.pmbts.2015.05.005
    [15]
    OLSEN T W, AABERG S Y, GEROSKI D H, et al. Human sclera: Thickness and surface area. Am J Ophthalmol,1998,125(2): 237–241. DOI: 10.1016/S0002-9394(99)80096-8
    [16]
    FRIBERG T R, LACE J W. A comparison of the elastic properties of human choroid and sclera. Exp Eye Res,1988,47(3): 429–436. DOI: 10.1016/0014-4835(88)90053-X
    [17]
    UGARTE M, HUSSAIN A A, MARSHALL J. An experimental study of the elastic properties of the human Bruch’s membrane-choroid complex: Relevance to ageing. Br J Ophthalmol,2006,90(5): 621–626. DOI: 10.1136/bjo.2005.086579
    [18]
    PIERSCIONEK B K, ASEJCZYK-WIDLICKA M, SCHACHAR R A. The effect of changing intraocular pressure on the corneal and scleral curvatures in the fresh porcine eye. Br J Ophthalmol,2007,91(6): 801–803. DOI: 10.1136/bjo.2006.110221
    [19]
    WANG X, TEOH C, CHAN A, et al. Biomechanical properties of Bruch’s membrane-choroid complex and their influence on optic nerve head biomechanics. Invest Ophthalmol Vis Sci,2018,59(7): 2808–2817. DOI: 10.1167/iovs.17-22069
    [20]
    KO M W, LEUNG L K, LAM D C, et al. Characterization of corneal tangent modulus in vivo. Acta Ophthalmol,2013,91(4): e263–e269[2021-05-08] . https://doi.org/10.1111/aos.12066.
    [21]
    WORTHINGTON K S, WILEY L A, BARTLETT A M, et al. Mechanical properties of murine and porcine ocular tissues in compression. Exp Eye Res,2014,121: 194–199. DOI: 10.1016/j.exer.2014.02.020
    [22]
    WHITCOMB J E, BARNETT V A, OLSEN T W, et al. Ex vivo porcine iris stiffening due to drug stimulation. Exp Eye Res,2009,89(4): 456–461. DOI: 10.1016/j.exer.2009.04.014
    [23]
    CHAKRABORTY R, READ S A, COLLINS M J. Hyperopic defocus and diurnal changes in human choroid and axial length. Optom Vis Sci,2013,90(11): 1187–1198. DOI: 10.1097/OPX.0000000000000035
    [24]
    CHAKRABORTY R, READ S A, COLLINS M J. Monocular myopic defocus and daily changes in axial length and choroidal thickness of human eyes. Exp Eye Res,2012,103: 47–54. DOI: 10.1016/j.exer.2012.08.002
    [25]
    FAN Y Y, JONAS J B, WANG Y X, et al. Horizontal and vertical optic disc rotation. The Beijing eye study. PLoS One, 2017, 12(5): e0175749[2021-05-08].https://doi.org/10.1371/journal.pone.0175749.
    [26]
    OHNO-MATSUI K, JONAS J B, SPAIDE R F. Macular Bruch membrane holes in highly myopic patchy chorioretinal atrophy. Am J Ophthalmol,2016,166: 22–28. DOI: 10.1016/j.ajo.2016.03.019
    [27]
    JONAS J B, OHNO-MATSUI K, SPAIDE R F, et al. Macular Bruch's membrane defects and axial length: Association with gamma zone and delta zone in peripapillary region. Invest Ophthalmol Vis Sci,2013,54(2): 1295–1302. DOI: 10.1167/iovs.12-11352
    [28]
    GUO Y, LIU L J, TANG P, et al. Optic disc-fovea distance and myopia progression in school children: The Beijing children eye study. Acta Ophthalmol,2018,96(5): e606–e613[2021-05-08]. https://doi.org/10.1111/aos.13728.
    [29]
    JONAS J B, FANG Y, WEBER P, et al. Parapapillary gamma and delta zones in high myopia. Retina,2018,38(5): 931–938. DOI: 10.1097/IAE.0000000000001650
    [30]
    ZHANG Q, XU L, WEI W B, et al. Size and shape of Bruch’s membrane opening in relationship to axial length, gamma zone, and macular Bruch’s membrane defects. Invest Ophthalmol Vis Sci,2019,60(7): 2591–2598. DOI: 10.1167/iovs.19-27331
    [31]
    DONG L, SHI X H, KANG Y K, et al. Amphiregulin and ocular axial length. Acta Ophthalmol,2019,97(3): e460–e470[2021-05-08]. https://doi.org/10.1111/aos.14080.

Catalog

    Article views (1788) PDF downloads (115) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return