Welcome to JOURNAL OF SICHUAN UNIVERSITY (MEDICAL SCIENCES)
SHI Ke, LI Ying, ZHANG Tian-jing, et al. Early Assessment of Myocardial Fibrosis of Hypertrophic Cardiomyopathy with Native-T1-Mapping-Based Deep Learning: A Preliminary Study[J]. Journal of Sichuan University (Medical Sciences), 2021, 52(5): 819-824. DOI: 10.12182/20210960506
Citation: SHI Ke, LI Ying, ZHANG Tian-jing, et al. Early Assessment of Myocardial Fibrosis of Hypertrophic Cardiomyopathy with Native-T1-Mapping-Based Deep Learning: A Preliminary Study[J]. Journal of Sichuan University (Medical Sciences), 2021, 52(5): 819-824. DOI: 10.12182/20210960506

Early Assessment of Myocardial Fibrosis of Hypertrophic Cardiomyopathy with Native-T1-Mapping-Based Deep Learning: A Preliminary Study

  •   Objective  To explore the diagnostic performance of deep learning (DL) model in early detection of the interstitial myocardial fibrosis using native T1 maps of hypertrophic cardiomyopathy (HCM) without late gadolinium enhancement (LGE).
      Methods  Sixty HCM patients and 44 healthy volunteers who underwent cardiac magnetic resonance were enrolled in this study. Each native T1 map was labeled according to its LGE status. Then, native T1 maps of LGE (−) and those of the controls were preprocessed and entered in the SE-ResNext-50 model as the matrix for the DL model for training, validation and testing.
      Results  A total of 241 native T1 maps were entered in the SE-ResNext-50 model. The model achieved a specificity of 0.87, sensitivity of 0.79, and area under curve (AUC) of 0.83 (P<0.05) in distinguishing native T1 maps of LGE (−) from those of the controls in the testing set.
      Conclusion  The DL model based on SE-ResNext-50 could be used for identifying native T1 maps of LGE (−) with relatively high accuracy. It is a promising approach for early detection of myocardial fibrosis in HCM without the use of contrast agent.
  • loading

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return