Citation: | ZHENG Ya-xian, HE Qin, XU Min, et al. Construction of Oral Insulin-Loaded Solid Lipid Nanoparticles and Their Intestinal Epithelial Cell Transcytosis Study[J]. Journal of Sichuan University (Medical Sciences), 2021, 52(4): 570-576. DOI: 10.12182/20210760502 |
[1] |
DRUCKER D J. Advances in oral peptide therapeutics. Nat Rev Drug Discovery,2020,19(4): 277–289. DOI: 10.1038/s41573-019-0053-0
|
[2] |
WU J, ZHENG Y, LIU M, et al. Biomimetic viruslike and charge reversible nanoparticles to sequentially overcome mucus and epithelial barriers for oral insulin delivery. ACS Appl Mater Interfaces,2018,10(12): 9916–9928. DOI: 10.1021/acsami.7b16524
|
[3] |
AGUIRRE T A, TEIJEIRO-OSORIO D, ROSA M, et al. Current status of selected oral peptide technologies in advanced preclinical development and in clinical trials. Adv Drug Deliv Rev,2016,106(Pt B): 223–241. DOI: 10.1016/j.addr.2016.02.004
|
[4] |
姚晟瑜, 樊星砚, 江宽, 等. 胰岛素口服给药的困境与突破. 药学学报,2020,55(7): 1549–1561.
|
[5] |
高明月, 霍英楠, 申欣, 等. 改良的在体循环法用于胰岛素的鼻腔吸收研究. 药学学报,2018,53(9): 1551–1556.
|
[6] |
XU Y, ZHENG Y, WU L, et al. Novel solid lipid nanoparticle with endosomal escape function for oral delivery of insulin. ACS Appl Mater Interfaces,2018,10(11): 9315–9324. DOI: 10.1021/acsami.8b00507
|
[7] |
BELOQUI A, DES RIEUX A, PREAT V. Mechanisms of transport of polymeric and lipidic nanoparticles across the intestinal barrier. Adv Drug Deliv Rev,2016,106(Pt B): 242–255. DOI: 10.1016/j.addr.2016.04.014
|
[8] |
ZHANG S, GAO H, BAO G. Physical principles of nanoparticle cellular endocytosis. ACS Nano,2015,9(9): 8655–8671. DOI: 10.1021/acsnano.5b03184
|
[9] |
ZHU X, WU J, SHAN W, et al. Polymeric nanoparticles amenable to simultaneous installation of exterior targeting and interior therapeutic proteins. Angew Chem Int Ed,2016,55(10): 3309–3312. DOI: 10.1002/anie.201509183
|
[10] |
SONG X, LI R, DENG H, et al. Receptor mediated transcytosis in biological barrier: The influence of receptor character and their ligand density on the transmembrane pathway of active-targeting nanocarriers. Biomaterials,2018,180: 78–90. DOI: 10.1016/j.biomaterials.2018.07.006
|
[11] |
CHEN C, ZHU X, DOU Y, et al. Exendin-4 loaded nanoparticles with a lipid shell and aqueous core containing micelles for enhanced intestinal absorption. J Biomed Nanotechnol,2015,11(5): 865–876. DOI: 10.1166/jbn.2015.1971
|
[12] |
WU L, LIU M, SHAN W, et al. Bioinspired butyrate-functionalized nanovehicles for targeted oral delivery of biomacromolecular drugs. J Control Release,2017,262: 273–283. DOI: 10.1016/j.jconrel.2017.07.045
|
[13] |
CHEN C, FAN T, JIN Y, et al. Orally delivered salmon calcitonin-loaded solid lipid nanoparticles prepared by micelle-double emulsion method via the combined use of different solid lipids. Nanomedicine,2012,8(7): 1085–1100. DOI: 10.2217/nnm.12.141
|
[14] |
LIU J, GONG T, FU H, et al. Solid lipid nanoparticles for pulmonary delivery of insulin. Int J Pharm,2008,356(1): 333–344. DOI: 10.1016/j.ijpharm.2008.01.008
|
[15] |
FAN W, XIA D, ZHU Q, et al. Functional nanoparticles exploit the bile acid pathway to overcome multiple barriers of the intestinal epithelium for oral insulin delivery. Biomaterials,2018,151: 13–23. DOI: 10.1016/j.biomaterials.2017.10.022
|
1. |
夏宇杰,朱芸菲. 等时替代模型应用于体力活动改善心理健康的研究进展. 心理月刊. 2024(14): 226-229 .
![]() |