Welcome to JOURNAL OF SICHUAN UNIVERSITY (MEDICAL SCIENCES) June 10, 2025
CAO Hong-fu, LI Zhu-lian, SUN Yong, et al. Role of Stem Cells and Their Biomimetic Matrix Microenvironment in Regenerative Repair of Articular Cartilage: A Review[J]. Journal of Sichuan University (Medical Sciences), 2021, 52(4): 548-554. DOI: 10.12182/20210760301
Citation: CAO Hong-fu, LI Zhu-lian, SUN Yong, et al. Role of Stem Cells and Their Biomimetic Matrix Microenvironment in Regenerative Repair of Articular Cartilage: A Review[J]. Journal of Sichuan University (Medical Sciences), 2021, 52(4): 548-554. DOI: 10.12182/20210760301

Role of Stem Cells and Their Biomimetic Matrix Microenvironment in Regenerative Repair of Articular Cartilage: A Review

More Information
  • Corresponding author:

    SUN Yong, E-mail:sunyong8702@scu.edu.cn

  • Received Date: January 26, 2021
  • Revised Date: March 17, 2021
  • Available Online: July 21, 2021
  • Published Date: July 19, 2021
  • It is difficult for the articular cartilage to self-heal any damage it may incur due to its lack of nerves and blood vessels. Development in stem cell technology provides new prospects for articular cartilage regeneration. Currently, stem cells from different sources and their diverse applications have demonstrated different degrees of therapeutic effect and potential in articular cartilage repair. However, stem cells are highly sensitive to their microenvironment. Therefore, more and more researchers are focusing their attention on regulating stem cells and thus accelerating cartilage regeneration through the biomimetic microenvironment constructed by biologically functional scaffolds. We reviewed in this paper the sources of the stem cells used for cartilage repair, the application method of these stem cells, as well as the therapeutic effect, mechanism and limitations in the application of stem cells synergizing with the biomimetic microenvironment in promoting articular cartilage repair and regeneration. We hoped to provide suggestions for practical clinical research in the design and improvement of biofunctional cartilage repair scaffolds that synergize with stem cells.
  • [1]
    HUEY D J, HU J C, ATHANASIOU K A. Unlike bone, cartilage regeneration remains elusive. Science,2012,338(6109): 917–921. DOI: 10.1126/science.1222454
    [2]
    HUANG B J, HU J C, ATHANASIOU K A. Cell-based tissue engineering strategies used in the clinical repair of articular cartilage. Biomaterials,2016,98: 1–22. DOI: 10.1016/j.biomaterials.2016.04.018
    [3]
    KANE P, FREDERICK R, TUCKER B, et al. Surgical restoration/repair of articular cartilage injuries in athletes. Physician Sportsmed,2013,41(2): 75–86. DOI: 10.3810/psm.2013.05.2017
    [4]
    ORTH P, GAO L, MADRY H. Microfracture for cartilage repair in the knee: A systematic review of the contemporary literature. Knee Surg Sports Traumatol Arthrosc,2020,28(3): 670–706. DOI: 10.1007/s00167-019-05359-9
    [5]
    ARMOIRY X, CUMMINS E, CONNOCK M, et al. Autologous chondrocyte implantation with chondrosphere for treating articular cartilage defects in the knee: an evidence review group perspective of a NICE single technology appraisal. Pharmacoeconomics,2019,37(7): 879–886. DOI: 10.1007/s40273-018-0737-z
    [6]
    PERDISA F, GOSTYŃSKA N, ROFFI A, et al. Adipose-derived mesenchymal stem cells for the treatment of articular cartilage: a systematic review on preclinical and clinical evidence. Stem cells int, 2015, 2015: 597652[2020-12-23].https://doi.org/10.1155/2015/597652.
    [7]
    NIEMEYER P, LAUTE V, JOHN T, et al. The effect of cell dose on the early magnetic resonance morphological outcomes of autologous cell implantation for articular cartilage defects in the knee: A randomized clinical trial. Am J Sport Med,2016,44(8): 2005–2014. DOI: 10.1177/0363546516646092
    [8]
    DECKER R S. Articular cartilage and joint development from embryogenesis to adulthood. Semin Cell Dev Biol,2017,62: 50–56. DOI: 10.1016/j.semcdb.2016.10.005
    [9]
    IM G I. Tissue engineering in osteoarthritis: Current status and prospect of mesenchymal stem cell therapy. Biodrugs,2018,32(3): 183–192. DOI: 10.1007/s40259-018-0276-3
    [10]
    KONG L, ZHENG L Z, QIN L, et al. Role of mesenchymal stem cells in osteoarthritis treatment. J Orthop Transl,2017,9: 89–103. DOI: 10.1016/j.jot.2017.03.006
    [11]
    HAN P, FRITH J E, GOMEZ G A, et al. 5 piconewtons: The difference between osteogenic and adipogenic fate choice in human mesenchymal stem cells. ACS Nano,2019,13(10): 11129–11143. DOI: 10.1021/acsnano.9b03914
    [12]
    FOYT D A, NORMAN M D A, YU T T L, et al. Exploiting advanced hydrogel technologies to address key challenges in regenerative medicine. Adv Health Care Mater,2018,7(8): 1700939. DOI: 10.1002/adhm.201700939
    [13]
    KLOXIN A M, KASKO A M, SALINAS C N, et al. Photodegradable hydrogels for dynamic tuning of physical and chemical properties. Science,2009,324(5923): 59–63. DOI: 10.1126/science.1169494
    [14]
    WALTERS N J, GENTLEMAN E. Evolving insights in cell-matrix interactions: elucidating how non-soluble properties of the extracellular niche direct stem cell fate. Acta Biomater,2015,11: 3–16. DOI: 10.1016/j.actbio.2014.09.038
    [15]
    CHANG Y H, LIU H W, WU K C, et al. Mesenchymal stem cells and their clinical applications in osteoarthritis. Cell Transplant,2016,25(5): 937–950. DOI: 10.3727/096368915X690288
    [16]
    HARRELL C R, MARKOVIC B S, FELLABAUM C, et al. Mesenchymal stem cell-based therapy of osteoarthritis: current knowledge and future perspectives. Biomed Pharmacother,2019,109: 2318–2326. DOI: 10.1016/j.biopha.2018.11.099
    [17]
    KADIYALA S, YOUNG R G, THIEDE M A, et al. Culture expanded canine mesenchymal stem cells possess osteochondrogenic potential in vivo and in vitro. Cell Transplant,1997,6(2): 125–134. DOI: 10.1016/S0963-6897(96)00279-5
    [18]
    TABATABAEE R M, SABERI S, PARVIZI J, et al. Combining concentrated autologous bone marrow stem cells injection with core decompression improves outcome for patients with early-stage osteonecrosis of the femoral head: A comparative study. J Arthroplasty,2015,30(9): 11–15. DOI: 10.1016/j.arth.2015.06.022
    [19]
    YANG X, ZHU T Y, WEN L C, et al. Intraarticular injection of allogenic mesenchymal stem cells has a protective role for the osteoarthritis. Chinese Med J,2015,128(18): 2516. DOI: 10.4103/0366-6999.164981
    [20]
    SHIM G, LEE S, HAN J, et al. Pharmacokinetics and in vivo fate of intra-articularly transplanted human bone marrow-derived clonal mesenchymal stem cells. Stem Cells Dev,2015,24(9): 1124–1132. DOI: 10.1089/scd.2014.0240
    [21]
    WANG T, NIMKINGRATANA P, SMITH C A, et al. Enhanced chondrogenesis from human embryonic stem cells. Stem Cell Res, 2019, 39: 101497[2020-12-23]. https://doi.org/10.1016/j.scr.2019.101497.
    [22]
    VAN LENT P L E M, VAN DEN BERG W B. Mesenchymal stem cell therapy in osteoarthritis: advanced tissue repair or intervention with smouldering synovial activation?ArthritisResTher, 2013, 15: 112[2020-12-23]. 10.1186/ar4190">https://doi.org/ 10.1186/ar4190.DOI: 10.1186/ar4190.
    [23]
    GENG Y, CHEN J, ALAHDAL M, et al. Intra-articular injection of hUC-MSC expressing miR-140-5p induces cartilage self-repairing in the rat osteoarthritis. J Bone Miner Metab,2020,38(3): 277–288. DOI: 10.1007/s00774-019-01055-3
    [24]
    WANG D, CHEN K, DU W T, et al. CD14+ monocytes promote the immunosuppressive effect of human umbilical cord matrix stem cells. Exp Cell Res,2010,316(15): 2414–2423. DOI: 10.1016/j.yexcr.2010.04.018
    [25]
    JEON H J, YOON K A, AN E S, et al. Therapeutic effects of human umbilical cord blood-derived mesenchymal stem cells combined with cartilage acellular matrix mediated via bone morphogenic protein 6 in a rabbit model of articular cruciate ligament transection. Stem Cell Rev Rep,2020,16(3): 596–611. DOI: 10.1007/s12015-020-09958-9
    [26]
    KERN S, EICHLER H, STOEVE J, et al. Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue. Stem Cells,2006,24(5): 1294–1301. DOI: 10.1634/stemcells.2005-0342
    [27]
    KRISTJANSSON B, HONSAWEK S. Current perspectives in mesenchymal stem cell therapies for osteoarthritis. Stem Cells Int,2014,2014: 47–59. DOI: 10.1155/2014/194318
    [28]
    HWANG Y S, KANG Y, MANTALARIS A. Directing embryonic stem cell differentiation into osteogenic chondrogenic lineage in vitro. Biotechnol Bioproc E,2007,12(1): 15–21. DOI: 10.1007/BF02931798
    [29]
    TAKAHASHI K, YAMANAKA S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell,2006,126(4): 663–676. DOI: 10.1016/j.cell.2006.07.024
    [30]
    NAKAJIMA M, WAKITANI S, HARADA Y, et al. In vivo mechanical condition plays an important role for appearance of cartilage tissue in ES cell transplanted joint. J Orthop Res,2008,26(1): 10–17. DOI: 10.1002/jor.20462
    [31]
    KRAMER J, HEGERT C, GUAN K, et al. Embryonic stem cell-derived chondrogenic differentiation in vitro: activation by BMP-2 and BMP-4. Mech Dev,2000,2: 193–205. DOI: 10.1016/S0925-4773(99)00339-1
    [32]
    冯振邦, 李萌, 王宗强, 等. 诱导多能干细胞在组织工程修复关节软骨损伤的研究进展. 中华细胞与干细胞杂志(电子版),2015,5(4): 281–286[2020-12-23
    [33]
    VERONESI F, GIAVARESI G, TSCHON M, et al. Clinical use of bone marrow, bone marrow concentrate, and expanded bone marrow mesenchymal stem cells in cartilage disease. Stem Cells Dev,2013,22(2): 181–192. DOI: 10.1089/scd.2012.0373
    [34]
    JO C H, LEE Y G, SHIN W H, et al. Intra-articular injection of mesenchymal stem cells for the treatment of osteoarthritis of the knee: A proof-of-concept clinical trial. Stem Cells,2014,32(5): 1254–1266. DOI: 10.1002/stem.1634
    [35]
    MATAS J, ORREGO M, AMENABAR D, et al. Umbilical cord-derived mesenchymal stromal cells (MSCs) for knee osteoarthritis: repeated MSC dosing is superior to a single MSC dose and to hyaluronic acid in a controlled randomized phase Ⅰ/Ⅱ trial. Stem Cell Transl Med,2019,8(3): 215–224. DOI: 10.1002/sctm.18-0053
    [36]
    FREITAG J, BATES D, WICKHAM J, et al. Adipose-derived mesenchymal stem cell therapy in the treatment of knee osteoarthritis: A randomized controlled trial. Regen Med,2019,14(3): 213–230. DOI: 10.2217/rme-2018-0161
    [37]
    KOH Y G, CHOI Y J, KWON S K, et al. Clinical results and second-look arthroscopic findings after treatment with adipose-derived stem cells for knee osteoarthritis. Knee Surg Sports Traumatol Arthrosc,2015,23(5): 1308–1316. DOI: 10.1007/s00167-013-2807-2
    [38]
    HUNZIKER E B. Articular cartilage repair: basic science and clinical progress. A review of the current status and prospects. Osteoarthr Cartilage,2002,10(6): 432–463. DOI: 10.1053/joca.2002.0801
    [39]
    CASE J M, SCOPP J M. Treatment of articular cartilage defects of the knee with microfracture and enhanced microfracture techniques. Sports Med Arthrosc Rev,2016,24(2): 63–68. DOI: 10.1097/JSA.0000000000000113
    [40]
    CHEN G, DENG C, LI Y P. TGF-beta and BMP signaling in osteoblast differentiation and bone formation. Int J Biol Sci,2012,8(2): 272–288. DOI: 10.7150/ijbs.2929
    [41]
    RONZIERE M C, PERRIER E, MALLEIN-GERIN F, et al. Chondrogenic potential of bone marrow-and adipose tissue-derived adult human mesenchymal stem cells. Bio-med Mater Eng,2010,20(3): 145–158. DOI: 10.3233/BME-2010-0626
    [42]
    MARYCZ K, LEWANDOWSKI D, TOMASZEWSKI K A, et al. Low-frequency, low-magnitude vibrations (LFLM) enhances chondrogenic differentiation potential of human adipose derived mesenchymal stromal stem cells (hASCs). Peer J, 2016, 4: e1637[2020-12-25]. https://peerj.com/articles/1637/. doi: 10.7717/peerj.1637.
    [43]
    TOH W S, LAI R C, HUI J H P, et al. MSC exosome as a cell-free MSC therapy for cartilage regeneration: Implications for osteoarthritis treatment. Semin Cell Dev Biol,2017,67: 56–64. DOI: 10.1016/j.semcdb.2016.11.008
    [44]
    EMANS P J, PIEPER J, HULSBOSCH M, et al. Differential cell viability ofchondrocytes and progenitor cells in tissue-engineered constructs following implantation into osteochondral defects. Tissue Eng,2006,12(6): 1699–1709. DOI: 10.1089/ten.2006.12.1699
    [45]
    徐立璋, 邓国英, 王伟恒, 等. BMSC旁分泌对软骨细胞IL-1β损伤后的保护作用. 中国修复重建外科杂志,2015,29(8): 996–1002. DOI: 10.7507/1002-1892.20150214
    [46]
    PARK Y B, HA C W, KIM J A, et al. Single-stage cell-based cartilage repair in a rabbit model: Cell tracking and in vivo chondrogenesis of human umbilical cord blood-derived mesenchymal stem cells and hyaluronic acid hydrogel composite. Osteoarthr Cartilage,2017,25(4): 570–580. DOI: 10.1016/j.jcyt.2018.02.344
    [47]
    CHEN Y, SUI J, WANG Q, et al. Injectable self-crosslinking HA-SH/Col Ⅰ blend hydrogels for in vitro construction of engineered cartilage. Carbohydpolym,2018,190: 57–66. DOI: 10.1016/j.carbpol.2018.02.057
    [48]
    YANG Q, PENG J, GUO Q, et al. A cartilage ECM-derived 3-Dporous acellular matrix scaffold for in vivo cartilage tissue engineering with PKH26-labeled chondrogenic bone marrow derived mesenchymal stem cells. Biomaterials,2008,29(15): 2378–2387. DOI: 10.1016/j.biomaterials.2008.01.037
    [49]
    刘茜, 李雪健, 王忠山. 猪软骨脱细胞基质对人脂肪干细胞增殖及分化的影响. 华西口腔医学杂志,2020,38(2): 122–127. DOI: 10.7518/hxkq.2020.02.002
    [50]
    于庆贺. 基质刚度对人脂肪间充质干细胞成软骨分化的影响. 广州: 南方医科大学, 2020.
    [51]
    洪雅真, 杨丁柱. 聚乳酸纳米纤维支架的生物相容性及促细胞成软骨分化. 材料导报,2018,32(18): 3239–3243. DOI: 10.11896/j.issn.1005-023X.2018.18.025
    [52]
    KASPER G, DANKERT N, TUISCHER J, et al. Mesenchymal stem cells regulate angiogenesis according to their mechanical environment. Stem Cells,2007,25(4): 903–910. DOI: 10.1634/stemcells.2006-0432
    [53]
    GIRISH K S, KEMPARAJUB K. The magic glue hyaluronan and its eraser hyaluronidase: A biological overview. Life Sci,2007,80(21): 1921–1943. DOI: 10.1016/j.lfs.2007.02.037
    [54]
    DAIPRÈ E, CONTI G, SBARBATI A. Hyaluronic acid (HA) scaffolds and multipotent stromal cells (MSCs) in regenerative medicine. Stem Cell Rev Rep,2016,12(6): 664–681. DOI: 10.1007/s12015-016-9684-2
    [55]
    QAZI TH, MOONEY DJ, DUDA GN, et al. Niche-mimicking interactions in peptide-functionalized 3D hydrogels amplifymesenchymal stromal cell paracrine effects. Biomaterials, 2019, 230: 119639[2020-12-23]. https://doi.org/10.1016/j.biomaterials.2019.119639.
    [56]
    KOTA D J, PRABHAKARA K S, COX C S, et al. MSC and hyaluronan: Sticking together for new therapeutic potential? Int J Biochem Cell Biol,2014,55: 1–10. DOI: 10.1016/j.biocel.2014.07.022
    [57]
    陈瑾楠. 高分子量透明质酸在炎症反应中作用的实验研究. 镇江: 江苏大学, 2019.
    [58]
    丁万军. 羧甲基壳聚糖对大鼠骨关节炎软骨细胞NF-κB信号通路的影响. 武汉: 武汉大学, 2011.
    [59]
    PANNI S A, CERCIELLO S, VASSO M. The management of knee cartilage defects with modified AMIC technique: preliminary results. Int J Immunopathol Pharmacol,2011,24(1 Suppl 2): 149–152. DOI: 10.1177/03946320110241s228
    [60]
    EFE T, THEISEN C, FUCHS-WINKELMANN S, et al. Cell-free collagen type I matrix for repair of cartilage defects-clinical and magnetic resonance imaging results. Knee Surg Sports Traumatol Arthrosc,2012,20(10): 1915–1922. DOI: 10.1007/s00167-011-1777-5
    [61]
    BAKER B M, CHEN C S. Deconstructing the third dimension—How 3D culture microenvironments alter cellular cues. J Cell Sci,2012,125(13): 3015–3024. DOI: 10.1242/jcs.079509
    [62]
    RICHING K M, COX B L, SALICK M R, et al. 3D collagen alignment limits protrusions to enhance breast cancer cell persistence. Biophys J,2014,107(11): 2546–2558. DOI: 10.1016/j.bpj.2014.10.035
    [63]
    HE X, JIANG Y. Substrate curvature regulates cell migration. Phys Biol, 2017, 14(3): 035006[2020-12-23]. https://iopscience.iop.org/article/10.1088/1478-3975/aa6f8e. doi: 10.1088/1478-3975/aa6f8e.

Catalog

    Article views (2203) PDF downloads (195) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return