Welcome to JOURNAL OF SICHUAN UNIVERSITY (MEDICAL SCIENCES) June 22, 2025
DONG Ya-ting, LI Peng-yu, SUN Ying-ying, et al. Biofilm Eradication Four-Step Strategy: Study of Using Self-Assembled Azithromycin/Rhamnolipid Nanoparticles for Removing Pseudomonas aeruginosa Biofilm[J]. Journal of Sichuan University (Medical Sciences), 2021, 52(4): 598-604. DOI: 10.12182/20210760207
Citation: DONG Ya-ting, LI Peng-yu, SUN Ying-ying, et al. Biofilm Eradication Four-Step Strategy: Study of Using Self-Assembled Azithromycin/Rhamnolipid Nanoparticles for Removing Pseudomonas aeruginosa Biofilm[J]. Journal of Sichuan University (Medical Sciences), 2021, 52(4): 598-604. DOI: 10.12182/20210760207

Biofilm Eradication Four-Step Strategy: Study of Using Self-Assembled Azithromycin/Rhamnolipid Nanoparticles for Removing Pseudomonas aeruginosa Biofilm

More Information
  • Corresponding author:

    HU Hai-yan, E-mail:lsshhy@mail.sysu.edu.cn

  • Received Date: March 21, 2021
  • Revised Date: May 31, 2021
  • Available Online: July 21, 2021
  • Published Date: July 19, 2021
  •   Objective  To investigate the in vitro eradicative effect of self-assembled azithromycin/rhamnolipid nanoparticles (AZI-RHL NPs) on Pseudomonas aeruginosa (P. aeruginosa) biofilm.
      Methods  AZI-RHL NPs were prepared and characterized. The minimum inhibitory concentration (MIC) of AZI-RHL NPs on planktonic P. aeruginosa was measured by the broth microdilution method. The eradicative effect of AZI-RHL NPs on P. aeruginosa biofilm was evaluated via crystal violet staining and SYTO 9/PI live/dead staining. Fluorescence labeling was used to measure the eradicative effect of NPs on extracellular polymeric substances (EPS). In addition, crystal violet staining was performed to evaluate the inhibitory effect of AZI-RHL NPs on the adhesion of P. aeruginosa on human bronchial epithelial BEAS-2B cells. To investigate the ability of AZI-RHL NPs to penetrate mucus, the interaction between NPs and mucin was measured via particle size changes after co-incubation with mucin solution.
      Results  The AZI-RHL NPs had a particle size of about 121 nm and were negatively charged on the surface, displaying a high encapsulation efficiency and a high drug loading capacity of 96.72% and 45.08% for AZI, respectively and 99.38% and 53.07% for RHL, respectively. The MIC of AZI-RHL NPs on planktonic P. aeruginosa was half of that of using AZI alone. AZI-RHL NPs displayed the capacity to effectively destroy the biofilm structure and remove the proteins and polysaccharides in EPS, eradicating biofilms in addition to reducing the survival rate of bacteria in the biofilm. AZI-RHL NPs were shown to have inhibited P. aeruginosa adhesion on BEAS-2B cells and prevented the residual bacteria from forming a new biofilm. There was no significant change in the particle size of NPs after co-incubation with mucin solution, indicating a weak interaction between NPs and mucin, and suggesting that NPs could penetrate the mucus and reach the P. aeruginosa infection sites.
      Conclusion  AZI-RHL NPs were able to effectively enhance the removal of P. aeruginosa biofilm through a four-step strategy of biofilm eradication, including penetrating the mucus, disintegrating the biofilm structure, killing the bacteria dispersed from biofilm, and preventing the adhesion of residual bacteria. We hope that this study will provide a replicable common strategy for the treatment of refractory infections caused by P. aeruginosa and other types of biofilms.
  • [1]
    PANG Z, RAUDONIS R, GLICK B R, et al. Antibiotic resistance in Pseudomonas aeruginosa: Mechanisms and alternative therapeutic strategies. Biotechnol Adv,2019,37(1): 177–192. DOI: 10.1016/j.biotechadv.2018.11.013
    [2]
    MALHOTRA S, HAYES D J, WOZNIAK D J. Cystic fibrosis and Pseudomonas aeruginosa: The host-microbe interface. Clin Microbiol Rev, 2019, 32(3): e00138-18[2021-05-28]. https://pubmed.ncbi.nlm.nih.gov/31142499/. doi: 10.1128/CMR.00138-18.
    [3]
    BASSETTI M, VENA A, CROXATTO A, et al. How to manage Pseudomonas aeruginosa infections. Drugs Context,2018,7: 212527[2021-05-28]. https://doi.org/10.7573/dic.212527.
    [4]
    陈小楠, 申元娜, 李彭宇, 等. 细菌生物膜的特征及抗细菌生物膜策略. 药学学报,2018,53(12): 2040–2049.
    [5]
    DOULL I. Cystic fibrosis 2019: Year in review. Paediatr Respir Rev,2020,35: 95–98[2021-05-28]. https://doi.org/10.1016/j.prrv.2020.04.001.
    [6]
    HUBBLE V B, HUBBARD B A, MINROVIC B M, et al. Using small-molecule adjuvants to repurpose azithromycin for use against Pseudomonas aeruginosa. ACS Infect Dis,2019,5(1): 141–151. DOI: 10.1021/acsinfecdis.8b00288
    [7]
    WAN F, BOHR S S, KLODZINSKA S N, et al. Ultrasmall TPGS-PLGA hybrid nanoparticles for site-specific delivery of antibiotics into Pseudomonas aeruginosa biofilms in lungs. ACS Appl Mater Interfaces,2020,12(1): 380–389. DOI: 10.1021/acsami.9b19644
    [8]
    HUANG Z, ZHOU T, YUAN Y, et al. Synthesis of carbon quantum dot-poly lactic-co-glycolic acid hybrid nanoparticles for chemo-photothermal therapy against bacterial biofilms. J Colloid Interface Sci,2020,577: 66–74[2021-05-28]. https://doi.org/10.1016/j.jcis.2020.05.067.
    [9]
    SHEN Y, ZOU Y, CHEN X, et al. Antibacterial self-assembled nanodrugs composed of berberine derivatives and rhamnolipids against Helicobacter pylori. J Control Release,2020,328: 575–586[2021-05-28]. https://doi.org/10.1016/j.jconrel.2020.09.025.
    [10]
    LI P, CHEN X, SHEN Y, et al. Mucus penetration enhanced lipid polymer nanoparticles improve the eradication rate of Helicobacter pylori biofilm. J Control Release,2019,300: 52–63[2021-05-28]. https://doi.org/10.1016/j.jconrel.2019.02.039.
    [11]
    BELANGER C R, LEE A H, PLETZER D, et al. Identification of novel targets of azithromycin activity against Pseudomonas aeruginosa grown in physiologically relevant media. Proc Natl Acad Sci U S A,2020,117(52): 33519–33529. DOI: 10.1073/pnas.2007626117
    [12]
    KAISER S J, MUTTERS N T, BLESSING B, et al. Natural isothiocyanates express antimicrobial activity against developing and mature biofilms of Pseudomonas aeruginosa. Fitoterapia,2017,119: 57–63[2021-05-28]. https://doi.org/10.1016/j.fitote.2017.04.006.
    [13]
    DE OLIVEIRA D, FORDE B M, KIDD T J, et al. Antimicrobial resistance in ESKAPE pathogens. Clin Microbiol Rev, 2020, 33(3): e00181-19[2021-05-28]. https://pubmed.ncbi.nlm.nih.gov/32404435/. doi: 10.1128/CMR.00181-19.
    [14]
    OLIVARES E, BADEL-BERCHOUX S, PROVOT C, et al. Clinical impact of antibiotics for the treatment of Pseudomonas aeruginosa biofilm infections. Front Microbiol,2019,10: 2894[2021-05-28]. https://doi.org/10.3389/fmicb.2019.02894.
    [15]
    CIOFU O, TOLKER-NIELSEN T. Tolerance and resistance of Pseudomonas aeruginosa biofilms to antimicrobial agents—How P. aeruginosa can escape antibiotics. Front Microbiol,2019,10: 913[2021-05-28]. https://doi.org/10.3389/fmicb.2019.00913.
    [16]
    SHEN Y, LI P, CHEN X, et al. Activity of sodium lauryl sulfate, rhamnolipids, and N-acetylcysteine against biofilms of five common pathogens. Microb Drug Resist,2020,26(3): 290–299. DOI: 10.1089/mdr.2018.0385
    [17]
    THI M, WIBOWO D, REHM B. Pseudomonas aeruginosa biofilms. Int J Mol Sci, 2020, 21(22): 671[2021-05-28]. https://doi.org/10.3390/ijms21228671.
    [18]
    LILLEHOJ E P, GUANG W, HYUN S W, et al. Neuraminidase 1-mediated desialylation of the mucin 1 ectodomain releases a decoy receptor that protects against Pseudomonas aeruginosa lung infection. J Biol Chem,2019,294(2): 662–678. DOI: 10.1074/jbc.RA118.006022
    [19]
    GUILHEN C, FORESTIER C, BALESTRINO D. Biofilm dispersal: Multiple elaborate strategies for dissemination of bacteria with unique properties. Mol Microbiol,2017,105(2): 188–210. DOI: 10.1111/mmi.13698
    [20]
    TURCIOS N L. Cystic fibrosis lung disease: An overview. Respir Care,2020,65(2): 233–251. DOI: 10.4187/respcare.06697
    [21]
    ZIERDEN H C, JOSYULA A, SHAPIRO R L, et al. Avoiding a sticky situation: Bypassing the mucus barrier for improved local drug delivery. Trends Mol Med,2021,27(5): 436–450. DOI: 10.1016/j.molmed.2020.12.001
  • Related Articles

    [1]LIANG Lulu, CHEN Xiangyi, ZHUANG Weijie, LIU Yuhao, ZHAO Wei. Research Progress on Drug Intervention to Inhibit Dental Plaque Biofilm Formation by Streptococcus mutans Based on the Concept of Ecological Prevention of Dental Caries[J]. JOURNAL OF SICHUAN UNIVERSITY (MEDICAL SCIENCES), 2024, 55(6): 1597-1603. DOI: 10.12182/20241160609
    [2]LIN Yong-wang, JING Mei-ling, LI Yu-qing, ZHOU Xue-dong. Inhibitory Effects of Nicotinamide on Streptococcus mutans Growth and Biofilm Formation[J]. JOURNAL OF SICHUAN UNIVERSITY (MEDICAL SCIENCES), 2022, 53(2): 268-273. DOI: 10.12182/20220360205
    [3]GUO Jia, CHEN Jia-min, LI Yu-qing, ZHOU Xue-dong. Study on the Effect of Polystyrene-Polyvinylpyrrolidone Electrospun Fibre in Inhibiting the Adhesion of Porphyromonas gingivalis[J]. JOURNAL OF SICHUAN UNIVERSITY (MEDICAL SCIENCES), 2021, 52(5): 754-758. DOI: 10.12182/20210960102
    [4]ZHONG Cai-ling, FENG Jiao, LIU Yu-ying, YANG Qiang, ZHANG Jing-qing. Preparation, Characterization and Pharmacokinetic Study of Arginine Deiminase Lipid Nanoparticles[J]. JOURNAL OF SICHUAN UNIVERSITY (MEDICAL SCIENCES), 2021, 52(4): 619-623. DOI: 10.12182/20210760503
    [5]PU Qi-kang, LIU Si-jing, HUANG Huan, XIONG Jing-fei, ZHNANG Li, FANG Zhi, WANG Chuan. Sterilization Effect of an Atmospheric Low Temperature Plasma Jet on Candida albicans Biofilm[J]. JOURNAL OF SICHUAN UNIVERSITY (MEDICAL SCIENCES), 2019, 50(3): 339-343.
    [7]LIU Xiao, LI Wen-gui, LUO Guang-xu. Study on Construction of Recombinant Bb-pGEX-OprI Vaccine of Pseudomonas aeruginosa and Its Protection Effect[J]. JOURNAL OF SICHUAN UNIVERSITY (MEDICAL SCIENCES), 2018, 49(1): 13-17.
    [8]LUO Yang, LI Qian, FAN Ya-ping. et al. STThe Role of HMGN2 in the Development of Periodontitis Dental Plaque[J]. JOURNAL OF SICHUAN UNIVERSITY (MEDICAL SCIENCES), 2016, 47(4): 491-494.
    [9]重庆市卫生服务需方对中医药卫生服务需求与利用的现况调查
    [J]. JOURNAL OF SICHUAN UNIVERSITY (MEDICAL SCIENCES), 2016, 47(3): 431-433.
    [10]FANG Mei, LU Qiao-rong, WANG Guo-qing. et al. Study on Rapid Detecting of Live Pseudomonas Aeruginosa by EMA-PCR[J]. JOURNAL OF SICHUAN UNIVERSITY (MEDICAL SCIENCES), 2014, 45(6): 1015-1018.
  • Cited by

    Periodical cited type(3)

    1. 吴微微,徐林苗,郝宏蕾,王琴,傅燕芳,郑小婷,翟瑞波,任文彦,苏艳佳,屈胜秋,梁伟波. 中国汉族男性家系Y-STR容差规律研究. 中国法医学杂志. 2023(03): 252-257+261 .
    2. 童梦洁,张科,李彩霞,张广峰,张文杰,杨澜,侯庆唐,刘京. 家系Y-STR基因座容差在系谱推断中的应用. 法医学杂志. 2023(03): 296-304 .
    3. 沈独清,张云雷,崔晏华,于华明,张辰宇,徐宾铎,张崇良,纪毓鹏,薛莹. 利用3种贝叶斯模型研究鱼类空间分布的影响因素——以海州湾六丝钝尾虾虎鱼为例. 海洋学报. 2023(11): 88-100 .

    Other cited types(2)

Catalog

    Article views (2134) PDF downloads (105) Cited by(5)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return