Citation: | DANZENGZHUOGA, ZHAO Zhi-feng, CHEN Mao. The Value of Using SCAI Cardiogenic Shock Stages in Predicting Mortality in CICU Patients[J]. Journal of Sichuan University (Medical Sciences), 2021, 52(3): 503-509. DOI: 10.12182/20210560104 |
[1] |
PUYMIRAT E, FAGON J Y, AEGERTER P, et al. Cardiogenic shock in intensive care units: evolution of prevalence, patient profile, management and outcomes, 1997-2012. Eur J Heart Fail,2017,19(2): 192–200. DOI: 10.1002/ejhf.646
|
[2] |
RATHOD K S, KOGANTI S, IQBAL M B, et al. Contemporary trends in cardiogenic shock: incidence, intra-aortic balloon pump utilisation and outcomes from the London Heart Attack Group. Eur Heart J Acute Cardiovasc Care,2018,7(1): 16–27. DOI: 10.1177/2048872617741735
|
[3] |
FLAHERTY M P, KHAN A R, O'NEILL W W. Early initiation of impella in acute myocardial infarction complicated by cardiogenic shock improves survival: a meta-analysis. JACC Cardiovasc Interv,2017,10(17): 1805–1806. DOI: 10.1016/j.jcin.2017.06.027
|
[4] |
CHENG R, RAMZY D, AZARBAL B, et al. Device strategies for patients in INTERMACS profiles 1 and 2 cardiogenic shock: double bridge with extracorporeal membrane oxygenation and initial implant of more durable devices. Artif Organs,2017,41(3): 224–232. DOI: 10.1111/aor.12758
|
[5] |
BARAN D A, GRINES C L, BAILEY S, et al. SCAI clinical expert consensus statement on the classification of cardiogenic shock: this document was endorsed by the American College of Cardiology (ACC), the American Heart Association (AHA), the Society of Critical Care Medicine (SCCM), and the Society of Thoracic Surgeons (STS) in April 2019. Catheter Cardiovasc Interv,2019,94(1): 29–37. DOI: 10.1002/ccd.28329
|
[6] |
JENTZER J C, VAN DIEPEN S, BARSNESS G W, et al. Cardiogenic shock classification to predict mortality in the cardiac intensive care unit. J Am Coll Cardiol,2019,74(17): 2117–2128. DOI: 10.1016/j.jacc.2019.07.077
|
[7] |
GRANGER C B, GOLDBERG R J, DABBOUS O, et al. Predictors of hospital mortality in the global registry of acute coronary events. Arch Intern Med,2003,163(19): 2345–2353. DOI: 10.1001/archinte.163.19.2345
|
[8] |
PENG Y, XIA T, LI Y, et al. Fibrinogen is related to long-term mortality in Chinese patients with acute coronary syndrome but failed to enhance the prognostic value of the GRACE score. Oncotarget,2017,8(13): 20622–20629. DOI: 10.18632/oncotarget.15094
|
[9] |
DILLI D, AKDUMAN H, ORUN U A, et al. Predictive value of vasoactive-inotropic score for mortality in newborns undergoing cardiac surgery. Indian Pediatr,2019,56(9): 735–740. DOI: 10.1007/s13312-019-1639-7
|
[10] |
JENTZER J C, WILEY B, BENNETT C, et al. Temporal trends and clinical outcomes associated with vasopressor and inotrope use in the cardiac intensive care unit. Shock,2020,53(4): 452–459. DOI: 10.1097/SHK.0000000000001390
|
[11] |
AMBROSY A P, STEVENS S R, AL-KHALIDI H R, et al. Burden of medical co-morbidities and benefit from surgical revascularization in patients with ischaemic cardiomyopathy. Eur J Heart Fail,2019,21(3): 373–381. DOI: 10.1002/ejhf.1404
|
[12] |
HUFFMAN M D, PRABHAKARAN D, ABRAHAM A K, et al. Optimal in-hospital and discharge medical therapy in acute coronary syndromes in Kerala: results from the Kerala acute coronary syndrome registry. Circ Cardiovasc Qual Outcomes,2013,6(4): 436–443. DOI: 10.1161/CIRCOUTCOMES.113.000189
|
[13] |
LEOPOLD V, GAYAT E, PIRRACCHIO R, et al. Epinephrine and short-term survival in cardiogenic shock: an individual data meta-analysis of 2583 patients. Intensive Care Med,2018,44(6): 847–856. DOI: 10.1007/s00134-018-5222-9
|
[14] |
LEVY B, CLERE-JEHL R, LEGRAS A, et al. Epinephrine versus norepinephrine for cardiogenic shock after acute myocardial infarction. J Am Coll Cardiol,2018,72(2): 173–182. DOI: 10.1016/j.jacc.2018.04.051
|
[15] |
JENTZER J C, VALLABHAJOSYULA S, KHANNA A K, et al. Management of refractory vasodilatory shock. Chest,2018,154(2): 416–426. DOI: 10.1016/j.chest.2017.12.021
|
[16] |
THIELE H, ZEYMER U, THELEMANN N, et al. Intra-aortic balloon pump in cardiogenic shock complicating acute myocardial infarction: long-term 6-year outcome of the randomized IABP-SHOCK Ⅱ trial. Circulation, 2018[2020-02-11]. https://doi.org/10.1161/CIRCULATIONAHA.118.038201.
|
[17] |
OUWENEEL D M, DE BRABANDER J, KARAMI M, et al. Real-life use of left ventricular circulatory support with Impella in cardiogenic shock after acute myocardial infarction: 12 years AMC experience. Eur Heart J Acute Cardiovasc Care,2019,8(4): 338–349. DOI: 10.1177/2048872618805486
|
[18] |
STROM J B, ZHAO Y, SHEN C, et al. National trends, predictors of use, and in-hospital outcomes in mechanical circulatory support for cardiogenic shock. EuroIntervention,2018,13: e2152–e2159[2020-03-11]. https://doi.org/10.4244/EIJ-D-17-00947.
|
[19] |
SCHOLZ K H, MAIER S K G, MAIER L S, et al. Impact of treatment delay on mortality in ST-segment elevation myocardial infarction (STEMI) patients presenting with and without haemodynamic instability: results from the German prospective, multicentre FITT-STEMI trial. Eur Heart J,2018,39(13): 1065–1074. DOI: 10.1093/eurheartj/ehy004
|
[20] |
KUBO S, YAMAJI K, INOHARA T, et al. In-Hospital outcomes after percutaneous coronary intervention for acute coronary syndrome with cardiogenic Shock (from a Japanese Nationwide Registry [J-PCI Registry]). Am J Cardiol,2019,123(10): 1595–1601. DOI: 10.1016/j.amjcard.2019.02.015
|
[21] |
PÖSS J, KÖSTER J, FUERNAU G, et al. Risk stratification for patients in cardiogenic shock after acute myocardial infarction. J Am Coll Card,2017,69(15): 1913–1920. DOI: 10.1016/j.jacc.2017.02.027
|