Citation: | TIAN Er-kang, WANG Yue, WU Zhuo-xuan, et al. Bacteriophage Therapy: Retrospective Review and Future Prospects[J]. Journal of Sichuan University (Medical Sciences), 2021, 52(2): 170-175. DOI: 10.12182/20210360207 |
[1] |
JEON G, AHN J. Assessment of phage-mediated inhibition of Salmonella Typhimurium treated with sublethal concentrations of ceftriaxone and ciprofloxacin. FEMS Microbiol Lett,2020,367(19): 19. DOI: 10.1093/femsle/fnaa159
|
[2] |
ŁUSIAK-SZELACHOWSKA M, MIĘDZYBRODZKI R, FORTUNA W, et al. Anti-phage serum antibody responses and the outcome of phage therapy. Folia Microbiol (Praha),2021,66(1): 127–131. DOI: 10.1007/s12223-020-00835-z
|
[3] |
HESSE S, ADHYA S. Phage therapy in the twenty-first century: facing the decline of the antibiotic era; is it finally time for the age of the phage? Annu Rev Microbiol,2019,73: 155–174. DOI: 10.1146/annurev-micro-090817-062535
|
[4] |
SUNDERLAND K S, YANG M, MAO C. Phage-enabled nanomedicine: from probes to therapeutics in precision medicine. Angew Chem Int Ed Engl,2017,56(8): 1964–1992. DOI: 10.1002/anie.201606181
|
[5] |
CHATTERJEE S, ROTHENBERG E. Interaction of bacteriophage l with its E. coli receptor, LamB. Viruses,2012,4(11): 3162–3178. DOI: 10.3390/v4113162
|
[6] |
HERMOSO J, GARCíA J, GARCíA P. Taking aim on bacterial pathogens: from phage therapy to enzybiotics. Curr Opin Microbiol,2007,10(5): 461–472. DOI: 10.1016/j.mib.2007.08.002
|
[7] |
CHANG R Y K, WALLIN M, LIN Y, et al. Phage therapy for respiratory infections. Adv Drug Deliv Rev,2018,133: 76–86. DOI: 10.1016/j.addr.2018.08.001
|
[8] |
GOLSHAHI L, SEED K D, DENNIS J J, et al. Toward modern inhalational bacteriophage therapy: nebulization of bacteriophages of Burkholderia cepacia complex. J Aerosol Med Pulm Drug Deliv,2008,21(4): 351–360. DOI: 10.1089/jamp.2008.0701
|
[9] |
YANG H, MA Y, WANG Y, et al. Transcription regulation mechanisms of bacteriophages: recent advances and future prospects. Bioengineered,2014,5(5): 300–304. DOI: 10.4161/bioe.32110
|
[10] |
MAXWELL K L. Phages tune in to host cell quorum sensing. Cell,2019,176(1/2): 7–8. DOI: 10.1016/j.cell.2018.12.007
|
[11] |
TAATI MOGHADAM M, AMIRMOZAFARI N, SHARIATI A, et al. How phages overcome the challenges of drug resistant bacteria in clinical infections. Infect Drug Resist,2020,13: 45–61. DOI: 10.2147/idr.S234353
|
[12] |
BERTOZZI SILVA J, STORMS Z, SAUVAGEAU D. Host receptors for bacteriophage adsorption. FEMS Microbiol Lett,2016,363(4): 2–11. DOI: 10.1093/femsle/fnw002
|
[13] |
REYES-ROBLES T, DILLARD R, CAIRNS L, et al. Vibrio cholerae outer membrane vesicles inhibit bacteriophage infection. J Bacteriol, 2018, 200(15): e00792-17[2020-11-03]. http://jb.asm.org/content/200/15/e00792-17. doi: 10.1128/jb.00792-17.
|
[14] |
ALSETH E O, PURSEY E, LUJÁN A M, et al. Bacterial biodiversity drives the evolution of CRISPR-based phage resistance. Nature,2019,574(7779): 549–552. DOI: 10.1038/s41586-019-1662-9
|
[15] |
AZAM A H, TANJI Y. Bacteriophage-host arm race: an update on the mechanism of phage resistance in bacteria and revenge of the phage with the perspective for phage therapy. Appl Microbiol Biotechnol,2019,103(5): 2121–2131. DOI: 10.1007/s00253-019-09629-x
|
[16] |
ABBINENI G, MODALI S, SAFIEJKO-MROCZKA B, et al. Evolutionary selection of new breast cancer cell-targeting peptides and phages with the cell-targeting peptides fully displayed on the major coat and their effects on actin dynamics during cell internalization. Mol Pharm,2010,7(5): 1629–1642. DOI: 10.1021/mp100052y
|
[17] |
DABROWSKA K, ZEMBALA M, BORATYNSKI J, et al. Hoc protein regulates the biological effects of T4 phage in mammals. Arch Microbiol,2007,187(6): 489–498. DOI: 10.1007/s00203-007-0216-y
|
[18] |
AN T, KIM S, LEE Y, et al. The immune-enhancing effect of the Cronobacter sakazakii ES2 phage results in the activation of nuclear factor-κB and dendritic cell maturation via the activation of IL-12p40 in the mouse bone marrow. Immunol Lett,2014,157: 1–8. DOI: 10.1016/j.imlet.2013.10.007
|
[19] |
GORDILLO ALTAMIRANO F L, BARR J J. Phage therapy in the postantibiotic era. Clin Microbiol Rev, 2019, 32(2): e00066-18[2020-11-03]. http://cmr.asm.org/content/32/2/e00066-18. doi: 10.1128/cmr.00066-18.
|
[20] |
CHANG R Y K, CHEN K, WANG J, et al. Proof-of-principle study in a murine lung infection model of antipseudomonal activity of phage PEV20 in a dry-powder formulation. Antimicrob Agents Chemother, 2018, 62(2): e01714-17[2020-11-03]. http://aac.asm.org/content/62/2/e01714-17. doi: 10.1128/aac.01714-17.
|
[21] |
LI W, SCHÄFER A, KULKARNI S, et al. High potency of a bivalent human V domain in SARS-CoV-2 animal models. Cell,2020,183(2): 429–441. e16[2020-11-03]. https://doi.org/10.1016/j.cell.2020.09.007.
|
[22] |
STEELE A, STACEY H J, DE SOIR S, et al. The safety and efficacy of phage therapy for superficial bacterial infections: a systematic review. Antibiotics (Basel),2020,9(11): 754–768. DOI: 10.3390/antibiotics9110754
|
[23] |
BROWN T L, PETROVSKI S, DYSON Z A, et al. The formulation of bacteriophage in a semi solid preparation for control of Propionibacterium acnes growth. PLoS One,2016,11(3): e0151184[2020-11-03]. https://doi.org/10.1371/journal.pone.0151184.
|
[24] |
SHETTIGAR K, MURALI T S. Virulence factors and clonal diversity of Staphylococcus aureus in colonization and wound infection with emphasis on diabetic foot infection. Eur J Clin Microbiol Infect Dis,2020,39(12): 2235–2246. DOI: 10.1007/s10096-020-03984-8
|
[25] |
KIFELEW L G, WARNER M S, MORALES S, et al. Efficacy of phage cocktail AB-SA01 therapy in diabetic mouse wound infections caused by multidrug-resistant Staphylococcus aureus. BMC Microbiol,2020,20(1): 204. DOI: 10.1186/s12866-020-01891-8
|
[26] |
VAHEDI A, SOLTAN DALLAL M M, DOURAGHI M, et al. Isolation and identification of specific bacteriophage against enteropathogenic Escherichia coli (EPEC) and in vitro and in vivo characterization of bacteriophage. FEMS Microbiol Lett, 2018, 365(16): fny136[2020-11-03]. https://doi.org/10.1093/femsle/fny136.
|
[27] |
DUERKOP B A, CLEMENTS C V, ROLLINS D, et al. A composite bacteriophage alters colonization by an intestinal commensal bacterium. Proc Natl Acad Sci U S A,2012,109(43): 17621–17626. DOI: 10.1073/pnas.1206136109
|
[28] |
BROUDY T B, FISCHETTI V A. In vivo lysogenic conversion of Tox- Streptococcus pyogenes to Tox+ with lysogenic Streptococci or free phage. Infect Immun,2003,71(7): 3782–3786. DOI: 10.1128/iai.71.7.3782-3786.2003
|
[29] |
RHOADS D D, WOLCOTT R D, KUSKOWSKI M A, et al. Bacteriophage therapy of venous leg ulcers in humans: results of a phase Ⅰ safety trial. J Wound Care,2009,18(6): 237–243. DOI: 10.12968/jowc.2009.18.6.42801
|
[30] |
KHALIFA L, BROSH Y, GELMAN D, et al. TargetingEnterococcus faecalis biofilms with phage therapy. Appl Environ Microbiol,2015,81(8): 2696–2705. DOI: 10.1128/aem.00096-15
|
[31] |
KHALIFA L, GELMAN D, SHLEZINGER M, et al. Defeating antibiotic- and phage-resistant Enterococcus faecalis using a phage cocktail in vitro and in a clot Model. Front Microbiol, 2018, 9: 326[2020-11-03]. https://doi.org/10.3389/fmicb.2018.00326.
|
[32] |
TINOCO J M, BUTTARO B, ZHANG H, et al. Effect of a genetically engineered bacteriophage on Enterococcus faecalis biofilms. Arch Oral Biol,2016,71: 80–86. DOI: 10.1016/j.archoralbio.2016.07.001
|
[33] |
DUNNE M, HUPFELD M, KLUMPP J, et al. Molecular basis of bacterial host interactions by Gram-positive targeting bacteriophages. Viruses, 2018, 10(8): 397[2020-11-03]. https://doi.org/10.3390/v10080397.
|
[34] |
BUTTERLY A, SCHMIDT U, WIENER-KRONISH J. Methicillin-resistant Staphylococcus aureus colonization, its relationship to nosocomial infection, and efficacy of control methods. Anesthesiology,2010,113(6): 1453–1459. DOI: 10.1097/ALN.0b013e3181fcf671
|
[35] |
BISWAS B, ADHYA S, WASHART P, et al. Bacteriophage therapy rescues mice bacteremic from a clinical isolate of vancomycin-resistant Enterococcus faecium. Infect Immun,2002,70(1): 204–210. DOI: 10.1128/iai.70.1.204-210.2002
|
[36] |
LEHMAN S M, MEARNS G, RANKIN D, et al. Design and preclinical development of a phage product for the treatment of antibiotic-resistant Staphylococcus aureus infections. Viruses, 2019, 11(1):88[2020-11-03]. https://doi.org/ 10.3390/v11010088.
|
[37] |
SUNAGAR R, PATIL S A, CHANDRAKANTH R K. Bacteriophage therapy for Staphylococcus aureus bacteremia in streptozotocin-induced diabetic mice. Res Microbiol,2010,161(10): 854–860. DOI: 10.1016/j.resmic.2010.09.011
|
[38] |
CHAN B K, TURNER P E, KIM S, et al. Phage treatment of an aortic graft infected with Pseudomonas aeruginosa. Evol Med Public Health,2018,2018(1): 60–66. DOI: 10.1093/emph/eoy005
|
[39] |
LAW N, LOGAN C, YUNG G, et al. Successful adjunctive use of bacteriophage therapy for treatment of multidrug-resistant Pseudomonas aeruginosa infection in a cystic fibrosis patient. Infection,2019,47(4): 665–668. DOI: 10.1007/s15010-019-01319-0
|
[40] |
LIANG Y, ZHANG H, SONG X, et al. Metastatic heterogeneity of breast cancer: molecular mechanism and potential therapeutic targets. Semin Cancer Biol,2020,60: 14–27. DOI: 10.1016/j.semcancer.2019.08.012
|
[41] |
ARAB A, BEHRAVAN N, RAZAZN A, et al. The viral approach to breast cancer immunotherapy. J Cell Physiol,2019,234(2): 1257–1267. DOI: 10.1002/jcp.27150
|
[42] |
CIOCAN D, CASSARD A M. Intestinal bacteria involved in nutritional liver disease killed by phagotherapy: a new therapeutic target. Med Sci (Paris),2020,36(4): 310–312. DOI: 10.1051/medsci/2020052
|
[43] |
JIANG L, LANG S, DUAN Y, et al. Intestinal virome in patients with alcoholic hepatitis. Hepatology,2020,72(6): 2182–2196. DOI: 10.1002/hep.31459
|
[44] |
DUAN Y, LLORENTE C, LANG S, et al. Bacteriophage targeting of gut bacterium attenuates alcoholic liver disease. Nature,2019,575(7783): 505–511. DOI: 10.1038/s41586-019-1742-x
|
[45] |
GÓRSKI A, MIĘDZYBRODZKI R, JOŃCZYK-MATYSIAK E, et al. The fall and rise of phage therapy in modern medicine. Expert Opin Biol Ther,2019,19(11): 1115–1117. DOI: 10.1080/14712598.2019.1651287
|
[46] |
BAO Q, LI X, HAN G, et al. Phage-based vaccines. Adv Drug Deliv Rev,2019,145: 40–56. DOI: 10.1016/j.addr.2018.12.013
|
[47] |
XU H, CAO B, GEORGE A, et al. Self-assembly and mineralization of genetically modifiable biological nanofibers driven by β-structure formation. Biomacromolecules,2011,12(6): 2193–2199. DOI: 10.1021/bm200274r
|
[48] |
GÓRSKI A, BORYSOWSKI J, MIĘDZYBRODZKI R. Phage therapy: towards a successful clinical trial. Antibiotics (Basel), 2020, 9(11):827 [2020-11-03 ] . https://doi.org/10.3390/antibiotics9110827.
|
[49] |
JAULT P, LECLERC T, JENNES S, et al. Efficacy and tolerability of a cocktail of bacteriophages to treat burn wounds infected by Pseudomonas aeruginosa (PhagoBurn): a randomised, controlled, double-blind phase 1/2 trial. Lancet Infect Dis,2019,19(1): 35–45. DOI: 10.1016/s1473-3099(18)30482-1
|
[50] |
GARNEAU J E, DUPUIS M, VILLION M, et al. The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA. Nature,2010,468(7320): 67–71. DOI: 10.1038/nature09523
|
[51] |
BIKARD D, EULER C W, JIANG W, et al. Exploiting CRISPR-Cas nucleases to produce sequence-specific antimicrobials. Nat Biotechnol,2014,32(11): 1146–1150. DOI: 10.1038/nbt.3043
|
[52] |
HENEIN A. What are the limitations on the wider therapeutic use of phage? Bacteriophage, 2013, 3(2): e24872[2020-11-04]. https://doi.org/10.4161/bact.24872.
|
[53] |
TAYLOR P W, STAPLETON P D, PAUL LUZIO J. New ways to treat bacterial infections. Drug Discov Today,2002,7(21): 1086–1091. DOI: 10.1016/s1359-6446(02)02498-4
|
[54] |
MERRIL C R, SCHOLL D, ADHYA S L. The prospect for bacteriophage therapy in Western medicine. Nat Rev Drug Discov,2003,2(6): 489–497. DOI: 10.1038/nrd1111
|
[55] |
LEITNER L, UJMAJURIDZE A, CHANISHVILI N, et al. Intravesical bacteriophages for treating urinary tract infections in patients undergoing transurethral resection of the prostate: a randomised, placebo-controlled, double-blind clinical trial. Lancet Infect Dis,2021,21(3): 427–436. DOI: 10.1016/S1473-3099(20)30330-3
|