Welcome to JOURNAL OF SICHUAN UNIVERSITY (MEDICAL SCIENCES) May 21, 2025
TIAN Er-kang, WANG Yue, WU Zhuo-xuan, et al. Bacteriophage Therapy: Retrospective Review and Future Prospects[J]. Journal of Sichuan University (Medical Sciences), 2021, 52(2): 170-175. DOI: 10.12182/20210360207
Citation: TIAN Er-kang, WANG Yue, WU Zhuo-xuan, et al. Bacteriophage Therapy: Retrospective Review and Future Prospects[J]. Journal of Sichuan University (Medical Sciences), 2021, 52(2): 170-175. DOI: 10.12182/20210360207

Bacteriophage Therapy: Retrospective Review and Future Prospects

More Information
  • Corresponding author:

    CHENG Wei, E-mail:chengwei669@scu.edu.cn

  • Received Date: November 28, 2020
  • Revised Date: February 02, 2021
  • Available Online: March 21, 2021
  • Published Date: March 19, 2021
  • At present, bacterial infections are mainly treated with antibiotics, but new treatment methods are urgently needed because of growing problems with antibiotic resistance. Therefore, phage therapy will be a potential solution to the problem of bacterial drug resistance, and the combined use of bacteriophage and antibiotics is also considered a potential treatment option. However, there has not been any well-designed clinical controlled trials on phage therapy. More future research needs to be done to solve the problems of phage therapy, for example, its narrow antibacterial spectrum, the uncertainty regarding treatment safety, and the bacterial resistance. Some refractory diseases such as breast cancer and alcoholic hepatitis are difficult to treat clinically. The successful experimental research on bacteriophages reported in these fields provides new ideas of treatment for more refractory diseases in the future. In addition, bacteriophages also showed promising performance in vaccine applications and osteanagenesis. We herein summarize the existing weaknesses of phage therapy and its application prospects in treating systemic diseases, hoping to promote further clinical application research of phage therapy.
  • [1]
    JEON G, AHN J. Assessment of phage-mediated inhibition of Salmonella Typhimurium treated with sublethal concentrations of ceftriaxone and ciprofloxacin. FEMS Microbiol Lett,2020,367(19): 19. DOI: 10.1093/femsle/fnaa159
    [2]
    ŁUSIAK-SZELACHOWSKA M, MIĘDZYBRODZKI R, FORTUNA W, et al. Anti-phage serum antibody responses and the outcome of phage therapy. Folia Microbiol (Praha),2021,66(1): 127–131. DOI: 10.1007/s12223-020-00835-z
    [3]
    HESSE S, ADHYA S. Phage therapy in the twenty-first century: facing the decline of the antibiotic era; is it finally time for the age of the phage? Annu Rev Microbiol,2019,73: 155–174. DOI: 10.1146/annurev-micro-090817-062535
    [4]
    SUNDERLAND K S, YANG M, MAO C. Phage-enabled nanomedicine: from probes to therapeutics in precision medicine. Angew Chem Int Ed Engl,2017,56(8): 1964–1992. DOI: 10.1002/anie.201606181
    [5]
    CHATTERJEE S, ROTHENBERG E. Interaction of bacteriophage l with its E. coli receptor, LamB. Viruses,2012,4(11): 3162–3178. DOI: 10.3390/v4113162
    [6]
    HERMOSO J, GARCíA J, GARCíA P. Taking aim on bacterial pathogens: from phage therapy to enzybiotics. Curr Opin Microbiol,2007,10(5): 461–472. DOI: 10.1016/j.mib.2007.08.002
    [7]
    CHANG R Y K, WALLIN M, LIN Y, et al. Phage therapy for respiratory infections. Adv Drug Deliv Rev,2018,133: 76–86. DOI: 10.1016/j.addr.2018.08.001
    [8]
    GOLSHAHI L, SEED K D, DENNIS J J, et al. Toward modern inhalational bacteriophage therapy: nebulization of bacteriophages of Burkholderia cepacia complex. J Aerosol Med Pulm Drug Deliv,2008,21(4): 351–360. DOI: 10.1089/jamp.2008.0701
    [9]
    YANG H, MA Y, WANG Y, et al. Transcription regulation mechanisms of bacteriophages: recent advances and future prospects. Bioengineered,2014,5(5): 300–304. DOI: 10.4161/bioe.32110
    [10]
    MAXWELL K L. Phages tune in to host cell quorum sensing. Cell,2019,176(1/2): 7–8. DOI: 10.1016/j.cell.2018.12.007
    [11]
    TAATI MOGHADAM M, AMIRMOZAFARI N, SHARIATI A, et al. How phages overcome the challenges of drug resistant bacteria in clinical infections. Infect Drug Resist,2020,13: 45–61. DOI: 10.2147/idr.S234353
    [12]
    BERTOZZI SILVA J, STORMS Z, SAUVAGEAU D. Host receptors for bacteriophage adsorption. FEMS Microbiol Lett,2016,363(4): 2–11. DOI: 10.1093/femsle/fnw002
    [13]
    REYES-ROBLES T, DILLARD R, CAIRNS L, et al. Vibrio cholerae outer membrane vesicles inhibit bacteriophage infection. J Bacteriol, 2018, 200(15): e00792-17[2020-11-03]. http://jb.asm.org/content/200/15/e00792-17. doi: 10.1128/jb.00792-17.
    [14]
    ALSETH E O, PURSEY E, LUJÁN A M, et al. Bacterial biodiversity drives the evolution of CRISPR-based phage resistance. Nature,2019,574(7779): 549–552. DOI: 10.1038/s41586-019-1662-9
    [15]
    AZAM A H, TANJI Y. Bacteriophage-host arm race: an update on the mechanism of phage resistance in bacteria and revenge of the phage with the perspective for phage therapy. Appl Microbiol Biotechnol,2019,103(5): 2121–2131. DOI: 10.1007/s00253-019-09629-x
    [16]
    ABBINENI G, MODALI S, SAFIEJKO-MROCZKA B, et al. Evolutionary selection of new breast cancer cell-targeting peptides and phages with the cell-targeting peptides fully displayed on the major coat and their effects on actin dynamics during cell internalization. Mol Pharm,2010,7(5): 1629–1642. DOI: 10.1021/mp100052y
    [17]
    DABROWSKA K, ZEMBALA M, BORATYNSKI J, et al. Hoc protein regulates the biological effects of T4 phage in mammals. Arch Microbiol,2007,187(6): 489–498. DOI: 10.1007/s00203-007-0216-y
    [18]
    AN T, KIM S, LEE Y, et al. The immune-enhancing effect of the Cronobacter sakazakii ES2 phage results in the activation of nuclear factor-κB and dendritic cell maturation via the activation of IL-12p40 in the mouse bone marrow. Immunol Lett,2014,157: 1–8. DOI: 10.1016/j.imlet.2013.10.007
    [19]
    GORDILLO ALTAMIRANO F L, BARR J J. Phage therapy in the postantibiotic era. Clin Microbiol Rev, 2019, 32(2): e00066-18[2020-11-03]. http://cmr.asm.org/content/32/2/e00066-18. doi: 10.1128/cmr.00066-18.
    [20]
    CHANG R Y K, CHEN K, WANG J, et al. Proof-of-principle study in a murine lung infection model of antipseudomonal activity of phage PEV20 in a dry-powder formulation. Antimicrob Agents Chemother, 2018, 62(2): e01714-17[2020-11-03]. http://aac.asm.org/content/62/2/e01714-17. doi: 10.1128/aac.01714-17.
    [21]
    LI W, SCHÄFER A, KULKARNI S, et al. High potency of a bivalent human V domain in SARS-CoV-2 animal models. Cell,2020,183(2): 429–441. e16[2020-11-03]. https://doi.org/10.1016/j.cell.2020.09.007.
    [22]
    STEELE A, STACEY H J, DE SOIR S, et al. The safety and efficacy of phage therapy for superficial bacterial infections: a systematic review. Antibiotics (Basel),2020,9(11): 754–768. DOI: 10.3390/antibiotics9110754
    [23]
    BROWN T L, PETROVSKI S, DYSON Z A, et al. The formulation of bacteriophage in a semi solid preparation for control of Propionibacterium acnes growth. PLoS One,2016,11(3): e0151184[2020-11-03]. https://doi.org/10.1371/journal.pone.0151184.
    [24]
    SHETTIGAR K, MURALI T S. Virulence factors and clonal diversity of Staphylococcus aureus in colonization and wound infection with emphasis on diabetic foot infection. Eur J Clin Microbiol Infect Dis,2020,39(12): 2235–2246. DOI: 10.1007/s10096-020-03984-8
    [25]
    KIFELEW L G, WARNER M S, MORALES S, et al. Efficacy of phage cocktail AB-SA01 therapy in diabetic mouse wound infections caused by multidrug-resistant Staphylococcus aureus. BMC Microbiol,2020,20(1): 204. DOI: 10.1186/s12866-020-01891-8
    [26]
    VAHEDI A, SOLTAN DALLAL M M, DOURAGHI M, et al. Isolation and identification of specific bacteriophage against enteropathogenic Escherichia coli (EPEC) and in vitro and in vivo characterization of bacteriophage. FEMS Microbiol Lett, 2018, 365(16): fny136[2020-11-03]. https://doi.org/10.1093/femsle/fny136.
    [27]
    DUERKOP B A, CLEMENTS C V, ROLLINS D, et al. A composite bacteriophage alters colonization by an intestinal commensal bacterium. Proc Natl Acad Sci U S A,2012,109(43): 17621–17626. DOI: 10.1073/pnas.1206136109
    [28]
    BROUDY T B, FISCHETTI V A. In vivo lysogenic conversion of Tox- Streptococcus pyogenes to Tox+ with lysogenic Streptococci or free phage. Infect Immun,2003,71(7): 3782–3786. DOI: 10.1128/iai.71.7.3782-3786.2003
    [29]
    RHOADS D D, WOLCOTT R D, KUSKOWSKI M A, et al. Bacteriophage therapy of venous leg ulcers in humans: results of a phase Ⅰ safety trial. J Wound Care,2009,18(6): 237–243. DOI: 10.12968/jowc.2009.18.6.42801
    [30]
    KHALIFA L, BROSH Y, GELMAN D, et al. TargetingEnterococcus faecalis biofilms with phage therapy. Appl Environ Microbiol,2015,81(8): 2696–2705. DOI: 10.1128/aem.00096-15
    [31]
    KHALIFA L, GELMAN D, SHLEZINGER M, et al. Defeating antibiotic- and phage-resistant Enterococcus faecalis using a phage cocktail in vitro and in a clot Model. Front Microbiol, 2018, 9: 326[2020-11-03]. https://doi.org/10.3389/fmicb.2018.00326.
    [32]
    TINOCO J M, BUTTARO B, ZHANG H, et al. Effect of a genetically engineered bacteriophage on Enterococcus faecalis biofilms. Arch Oral Biol,2016,71: 80–86. DOI: 10.1016/j.archoralbio.2016.07.001
    [33]
    DUNNE M, HUPFELD M, KLUMPP J, et al. Molecular basis of bacterial host interactions by Gram-positive targeting bacteriophages. Viruses, 2018, 10(8): 397[2020-11-03]. https://doi.org/10.3390/v10080397.
    [34]
    BUTTERLY A, SCHMIDT U, WIENER-KRONISH J. Methicillin-resistant Staphylococcus aureus colonization, its relationship to nosocomial infection, and efficacy of control methods. Anesthesiology,2010,113(6): 1453–1459. DOI: 10.1097/ALN.0b013e3181fcf671
    [35]
    BISWAS B, ADHYA S, WASHART P, et al. Bacteriophage therapy rescues mice bacteremic from a clinical isolate of vancomycin-resistant Enterococcus faecium. Infect Immun,2002,70(1): 204–210. DOI: 10.1128/iai.70.1.204-210.2002
    [36]
    LEHMAN S M, MEARNS G, RANKIN D, et al. Design and preclinical development of a phage product for the treatment of antibiotic-resistant Staphylococcus aureus infections. Viruses, 2019, 11(1):88[2020-11-03]. https://doi.org/ 10.3390/v11010088.
    [37]
    SUNAGAR R, PATIL S A, CHANDRAKANTH R K. Bacteriophage therapy for Staphylococcus aureus bacteremia in streptozotocin-induced diabetic mice. Res Microbiol,2010,161(10): 854–860. DOI: 10.1016/j.resmic.2010.09.011
    [38]
    CHAN B K, TURNER P E, KIM S, et al. Phage treatment of an aortic graft infected with Pseudomonas aeruginosa. Evol Med Public Health,2018,2018(1): 60–66. DOI: 10.1093/emph/eoy005
    [39]
    LAW N, LOGAN C, YUNG G, et al. Successful adjunctive use of bacteriophage therapy for treatment of multidrug-resistant Pseudomonas aeruginosa infection in a cystic fibrosis patient. Infection,2019,47(4): 665–668. DOI: 10.1007/s15010-019-01319-0
    [40]
    LIANG Y, ZHANG H, SONG X, et al. Metastatic heterogeneity of breast cancer: molecular mechanism and potential therapeutic targets. Semin Cancer Biol,2020,60: 14–27. DOI: 10.1016/j.semcancer.2019.08.012
    [41]
    ARAB A, BEHRAVAN N, RAZAZN A, et al. The viral approach to breast cancer immunotherapy. J Cell Physiol,2019,234(2): 1257–1267. DOI: 10.1002/jcp.27150
    [42]
    CIOCAN D, CASSARD A M. Intestinal bacteria involved in nutritional liver disease killed by phagotherapy: a new therapeutic target. Med Sci (Paris),2020,36(4): 310–312. DOI: 10.1051/medsci/2020052
    [43]
    JIANG L, LANG S, DUAN Y, et al. Intestinal virome in patients with alcoholic hepatitis. Hepatology,2020,72(6): 2182–2196. DOI: 10.1002/hep.31459
    [44]
    DUAN Y, LLORENTE C, LANG S, et al. Bacteriophage targeting of gut bacterium attenuates alcoholic liver disease. Nature,2019,575(7783): 505–511. DOI: 10.1038/s41586-019-1742-x
    [45]
    GÓRSKI A, MIĘDZYBRODZKI R, JOŃCZYK-MATYSIAK E, et al. The fall and rise of phage therapy in modern medicine. Expert Opin Biol Ther,2019,19(11): 1115–1117. DOI: 10.1080/14712598.2019.1651287
    [46]
    BAO Q, LI X, HAN G, et al. Phage-based vaccines. Adv Drug Deliv Rev,2019,145: 40–56. DOI: 10.1016/j.addr.2018.12.013
    [47]
    XU H, CAO B, GEORGE A, et al. Self-assembly and mineralization of genetically modifiable biological nanofibers driven by β-structure formation. Biomacromolecules,2011,12(6): 2193–2199. DOI: 10.1021/bm200274r
    [48]
    GÓRSKI A, BORYSOWSKI J, MIĘDZYBRODZKI R. Phage therapy: towards a successful clinical trial. Antibiotics (Basel), 2020, 9(11):827 [2020-11-03 ] . https://doi.org/10.3390/antibiotics9110827.
    [49]
    JAULT P, LECLERC T, JENNES S, et al. Efficacy and tolerability of a cocktail of bacteriophages to treat burn wounds infected by Pseudomonas aeruginosa (PhagoBurn): a randomised, controlled, double-blind phase 1/2 trial. Lancet Infect Dis,2019,19(1): 35–45. DOI: 10.1016/s1473-3099(18)30482-1
    [50]
    GARNEAU J E, DUPUIS M, VILLION M, et al. The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA. Nature,2010,468(7320): 67–71. DOI: 10.1038/nature09523
    [51]
    BIKARD D, EULER C W, JIANG W, et al. Exploiting CRISPR-Cas nucleases to produce sequence-specific antimicrobials. Nat Biotechnol,2014,32(11): 1146–1150. DOI: 10.1038/nbt.3043
    [52]
    HENEIN A. What are the limitations on the wider therapeutic use of phage? Bacteriophage, 2013, 3(2): e24872[2020-11-04]. https://doi.org/10.4161/bact.24872.
    [53]
    TAYLOR P W, STAPLETON P D, PAUL LUZIO J. New ways to treat bacterial infections. Drug Discov Today,2002,7(21): 1086–1091. DOI: 10.1016/s1359-6446(02)02498-4
    [54]
    MERRIL C R, SCHOLL D, ADHYA S L. The prospect for bacteriophage therapy in Western medicine. Nat Rev Drug Discov,2003,2(6): 489–497. DOI: 10.1038/nrd1111
    [55]
    LEITNER L, UJMAJURIDZE A, CHANISHVILI N, et al. Intravesical bacteriophages for treating urinary tract infections in patients undergoing transurethral resection of the prostate: a randomised, placebo-controlled, double-blind clinical trial. Lancet Infect Dis,2021,21(3): 427–436. DOI: 10.1016/S1473-3099(20)30330-3
  • Cited by

    Periodical cited type(6)

    1. 仁礼欢,宋鉴,殷丽梅,丁秀萍,董芳,刁菊菊,张露露,孙阿妮. 噬菌体疗法在伤口感染抗菌治疗中应用的研究进展. 中华创伤杂志. 2024(09): 844-849 .
    2. 王粟,丁立,姜文容,缪应新,张艳梅,赵虎. 高毒力肺炎克雷伯菌耐药性和治疗策略研究进展. 检验医学. 2023(01): 81-86 .
    3. 林翠翠. 噬菌体对人体肠道菌群和肠道炎症影响的研究进展. 中外医学研究. 2023(17): 180-184 .
    4. 李忆博,刘桢,罗文欣,周丹. 噬菌体在口腔医学领域的应用研究进展. 中国实用口腔科杂志. 2023(05): 630-634 .
    5. 陈荟玉,赵素文. 噬菌体Z基因组生物合成通路的研究进展. 遗传. 2023(10): 887-903 .
    6. 柴霜,赵文卓,杨芳,王小清,于正森. 细菌耐药性及抗菌新药研发策略. 国外医药(抗生素分册). 2021(04): 204-208 .

    Other cited types(10)

Catalog

    Article views (4341) PDF downloads (428) Cited by(16)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return